ON THE SIZES OF k-SUBGRAPHS OF THE BINOMIAL RANDOM GRAPH

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Consider E(G, k) — the set of all sizes (numbers of edges) of induced subgraphs of size k in a given graph G with n vertices. For the binomial random graph G = G(n, p), we proved that, for each α > 0 and ε small enough, the set E(G, k) with high probability contains a large segment for all k such that (ln n)1+α < k < εn. We also found the asymptotic length of this segment.

Sobre autores

Y. Yarovikov

Moscow Institute of Physics and Technology (National Research University)

Email: yu-rovikov@yandex.ru
Dolgoprudny, Moscow Region, Russia

Bibliografia

  1. Noga A., Kostochka A.V. Induced subgraphs with distinct sizes // Random Structures & Algorithms. 2009. V. 34. № 1. P. 45–53.
  2. Erdos P. Some of my favorite problems in various branches of combinatorics // Matematiche (Catania). 1992. V. 47. P. 231–240.
  3. Erdos P. Some recent problems and results in graph theory // Discrete Math. 1997. V. 164. P. 81–85.
  4. Balogh J., Zhukovskii M. On the sizes of large subgraphs of the binomial random graph // Discrete Mathematics. 2022. V. 345. № 2. P. 112675.
  5. Janson S., Luczak T., Rucinski A. Random graphs. John Wiley & Sons. 2011.
  6. El Cheairi H., Gamarnik D. Densest subgraphs of a dense Erdos-Renyi graph. Asymptotics, landscape and universality // arXiv e-prints. 2022. C. arXiv: 2212.03925.
  7. Erdos P., Szemeredi A. On a Ramsey type theorem // Periodica Mathematica Hungarica. 1972. V. 2. № 1–4. P. 295–299.
  8. Kwan M., Sudakov B. Proof of a conjecture on induced subgraphs of Ramsey graphs // Transactions Amer. Math. Soc. 2019. V. 372. P. 5571–5594.
  9. Alon N., Spencer J.H. The probabilistic method. John Wiley & Sons. 2016.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Nota

In the print version, the article was published under the DOI: 10.31857/S2686954325030128


Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).