ON ONE APPROACH TO OBTAINING THE BOUNDARIES OF PERTURBATION OF HOMOGENEOUS MARKOV PROCESSES
- Autores: Zeifman A.I1,2, Usov I.A1, Satin Y.A1, Kryukova A.L1, Korolev V.Y2,3,4
-
Afiliações:
- Vologda State University
- Federal Research Center "Informatics and Management" of the Russian Academy of Sciences
- Moscow Center for Fundamental and Applied Mathematics
- Lomonosov Moscow State University
- Edição: Volume 523, Nº 1 (2025)
- Páginas: 35-43
- Seção: MATHEMATICS
- URL: https://ogarev-online.ru/2686-9543/article/view/305343
- DOI: https://doi.org/10.31857/S2686954325030072
- EDN: https://elibrary.ru/JSQTSA
- ID: 305343
Citar
Resumo
Sobre autores
A. Zeifman
Vologda State University; Federal Research Center "Informatics and Management" of the Russian Academy of Sciences
Email: a_zeifman@mail.ru
Vologda, Russia; Moscow, Russia
I. Usov
Vologda State University
Email: tusov35@yandex.ru
Vologda, Russia
Ya. Satin
Vologda State University
Email: yacovi@mail.ru
Vologda, Russia
A. Kryukova
Vologda State University
Email: kryukovaforstudents@gmail.com
Vologda, Russia
V. Korolev
Federal Research Center "Informatics and Management" of the Russian Academy of Sciences; Moscow Center for Fundamental and Applied Mathematics; Lomonosov Moscow State University
Email: vkorolev@cs.msu.ru
Moscow, Russia
Bibliografia
- Капашников В.В. Качественный анализ сложных систем методом пробных функций. М.: Наука. 1978.
- Штюйян Д. Качественные свойства и оценки стохастических моделей. М.: Мир. 1979.
- Золотарев В.М. Количественные оценки свойства непрерывности систем массового обслуживания типа G/G/∞ // Теория вероятностей и ее применения. 1977. Т. 22. С. 700–711.
- Золотарев В.М. Вероятностные метрики // Теория вероятностей и ее применения. 1983. Т. 28. С. 264–287.
- Zeifman A.I., Korolev V.Y. On perturbation bounds for continuous-time Markov chains // Stat. & Prob. Let. 2014. V. 88. P. 66–72.
- Mitrophanov A.Y. Connection between the rate of convergence to stationarity and stability to perturbations for stochastic and deterministic systems // In Proceedings of the 38th International Conference Dynamics Days Europe. Loughborough. UK. 2018. P. 3–7.
- Mitrophanov A.Y. The Arsenal of Perturbation Bounds for Finite Continuous-Time Markov Chains: A Perspective // Mathematics. 2024. V. 12.
- Zeifman A., Korolev V., Satin Y. Two approaches to the construction of perturbation bounds for continuous-time Markov chains // Mathematics. 2020. V. 8. P. 253.
- Zeifman A.I. Stability for continuous-time nonhomogeneous Markov chains // Lecture Notes in Mathematics. 1985. V. 1155. P. 401–414.
- Zeifman A.I., Korotysheva A.V. Perturbation bounds for queue with catastrophes // Stochastic models. 2012. V. 28. P. 49–62.
- Mitrophanov A.Y. Sensitivity and convergence of uniformly ergodic Markov chains // Journal of Applied Probability. 2005. V. 42. P. 1003–1014.
- Далецкий Ю.Л., Крейп М.Г. Устойчивость решений дифференциальных уравнений в банаховом пространстве. М.: Наука, 1970.
- Сапиш Я.А., Крюкова А.Л., Ощущкова В.С., Зейдман А.И. О монотонности некоторых классов марковских цепей // Информ. и ее примеч. 2022. Т. 16. № 2. 27–34.
- Cho G.E., Meyer C.D. Comparison of perturbation bounds for the stationary distribution of a Markov chain // Linear Algebra and its Applications. 2001. V. 335. P. 137–150.
- Yuanyuan Liu. Perturbation Bounds for the Stationary Distributions of Markov Chains // SIAM Journal on Matrix Analysis and Applications. 2012. V. 33. P. 1057–1074.
- Gaudio J., Saurabh A., Patrick J. Exponential convergence rates for stochastically ordered Markov processes under perturbation // Systems & Control Letters. 2019. V. 133.
- Wang T., Plechac P. Steady-state sensitivity analysis of continuous time Markov chains // SIAM Journal on Numerical Analysis. 2019. V. 57. P. 192–217.
- YuanYuan Liu. Perturbation analysis for continuous-time Markov chains // Science China Mathematics. 2015. V. 58. P. 2633–2642.
- Altman E., Avrachenkov K., Nunez-Queija R. Perturbation analysis for denumerable Markov chains with application to queueing models // Advances in Applied Probability. 2004. V. 36. P. 839–853.
- Shao J. Comparison theorem and stability under perturbation of transition rate matrices for regime-switching processes // Journal of Applied Probability. First View. 2023. P. 1–18.
- Seidphan A.H., Kopouee B.IO., Pazywчик P.B., Camun Я.A., Koeauee H.A. O предельных характеристиках для систем обслуживания с исчезающими возмущениями // Доклады Российской академии наук. Математика, информатика, процессы управления. 2022. Т. 506. № 1. С. 83–88.
- Zeifman A., Usov I., Kryukova A., Satin Y., Shilova G. On the Approach to Obtaining Perturbation Bounds for a Class of Birth-Death Processes // 7th International Conference on Information. Control, and Communication Technologies (ICCT). 2023. P. 1–6.
- Zeifman A., Satin Y., Kovalev I., Razumchik R., Korolev V. Facilitating Numerical Solutions of Inhomogeneous Continuous Time Markov Chains Using Ergodicity Bounds Obtained with Logarithmic Norm Method // Mathematics. 2021.
- Marin A., Rossi S. A queueing model that works only on the biggest jobs // In European Workshop on Performance Engineering. 2019. P. 118–132.
- Chen A., Wu X., Zhang J. Markovian bulk-arrival and bulk-service queues with general state-dependent control // Queueing Syst. 2020. P. 1–48.
- Van Doorn E. A. Conditions for exponential ergodicity and bounds for the decay parameter of a birth-death process // Advances in Applied Probability. 1985. V. 17. P. 514–530.
Arquivos suplementares
