Optimization of A549 cell transfection efficiency with a plasmid encoding the N-protein of the SARS-CoV-2 virus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

To test new antiviral drugs aimed at degrading the nucleocapsid protein (N-protein) of the SARS-CoV-2 virus, it is desirable to have cells expressing the N-protein, for which it is necessary to find conditions for the maximum achievable efficiency of cell transfection with a plasmid encoding this protein. For transfection, polyplexes were used consisting of a plasmid encoding the N-protein fused with the mRuby3 fluorescent protein and polyethyleneimine (PEI)-polyethylene glycol (PEG)-TAT peptide block copolymers. The dependence of the transfection efficiency of human lung adenocarcinoma A549 cells on the PEG/PEI and N/P ratios (the ratio of nitrogen in PEI to phosphate in DNA) was studied. Significant positive correlations were shown between transfection efficiency determined by flow cytometry, the N/P ratio, and the proportion of polyplexes sized 40–54 nm. The data obtained can serve as a basis for creating an animal model of lung cells transiently expressing the N protein of the SARS-CoV-2 virus.

About the authors

Yu. V. Khramtsov

Institute of Gene Biology, RAS

Moscow, Russian Federation

T. N. Lupanova

Institute of Gene Biology, RAS

Moscow, Russian Federation

A. A. Rosenkranz

Institute of Gene Biology, RAS; Lomonosov Moscow State University

Moscow, Russian Federation; Moscow, Russian Federation

G. P. Georgiev

Institute of Gene Biology, RAS

Moscow, Russian Federation

A. S. Sobolev

Institute of Gene Biology, RAS; Lomonosov Moscow State University

Email: alsobolev@yandex.ru
Moscow, Russian Federation; Moscow, Russian Federation

References

  1. Surjit M., Lal S. K. // Infect Genet Evol. 2008. V. 8. P. 397–405.
  2. Wu C., Zheng, M. // Preprints. 2020. 2020020247.
  3. Prajapat M., Sarma P., Shekhar N., et al. // Indian J Pharmacol. 2020. V. 52. P. 56.
  4. Bestion E., Halfon P., Mezouar S., et al. // Viruses. 2022. V. 14. 1507.
  5. Ulasov A. V., Khramtsov Y. V., Trusov G. A., et al. // Mol. Ther. 2011. V. 19. P. 103–112.
  6. Shahbazi S., Haghighipour N., Soleymani S., et al. // Biotechnology letters. 2018. V. 40. P. 923–931.
  7. Hall A., Lachelt U., Bartek J., et al. // Mol. Ther. 2017. V. 25. P. 1476–1490.
  8. Трусов Г. А., Уласов А. В., Белецкая Е. А., и др. // ДАН. 2011. Т. 437. С. 266–268.
  9. Perrine T. D., Landis W. R. // J. Polym. Sci. A1. 1967. V. 5. P. 1993–2003.
  10. Kunath K., von Harpe A., Petersen H. et al. // Pharm. Res. 2002. V. 19. P. 810–817.
  11. Gong X. W., Wei D. Z., He M. L. et al. // Talanta. 2007. V. 71. P. 381–384.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).