Network modeling of the intellectual competence structure

Cover Page

Cite item

Full Text

Abstract

Background. Adolescence is characterized by significant qualitative transformations in the physical, intellectual, personal, and spiritual spheres of an individual. This stage is notable for a marked improvement in problem-solving skills, driven by the development of conceptual thinking and metacognitive abilities in the context of intellectual growth. These advanced cognitive mechanisms are key to achieving intellectual competence and productivity.

Purpose. To determine the structure of the intellectual competence construct in late adolescence in terms of its conceptual, metacognitive, and intentional abilities.

Materials and methods. The article presents the results of an empirical study aimed at identifying the structure of intellectual competence in the context of manifestations of conceptual abilities, voluntary and involuntary metacognitive abilities, and intentional abilities in older adolescents. The study involved 90 students aged 14–16 from secondary schools in Moscow. Data from the following methods were used in the study: “Conceptual Synthesis” (by M.A. Kholodnaya, Y.I. Sipovskaya, 2023), “Method for Diagnosing the Degree of Reflexivity Development” (by A.V. Karpov, 2003), “Matching Familiar Figures Test” (by J. Kagan, 1966), “Mindset” (by Y.I. Sipovskaya, 2015) and “Interpretation” (by Y.I. Sipovskaya, 2016).

Results. Correlates of intellectual competence indicators in late adolescence were identified, demonstrating selective correlations with conceptual, metacognitive, and intentional abilities. The main elements of the intellectual competence construct include skills related to creating new contexts, managing intellectual activity, and exhibiting specialized intellectual sensitivity. At the same time, indicators of involuntary intellectual control show a weaker association with intellectual competence. This suggests that the intellectual competence construct is heterogeneous, reflecting differences in the functional roles and cognitive complexity of its components.

About the authors

Yana I. Sipovskaya

Institute of Psychology Russian Academy of Sciences

Author for correspondence.
Email: sipovskayayi@ipran.ru
ORCID iD: 0000-0002-7226-0560
SPIN-code: 6174-7627
Scopus Author ID: 57211157567
ResearcherId: Q-3627-2016

PhD in Psychology, Senior Researcher

Russian Federation, 13, Yaroslavskaya Str., 129366, Moscow, Russian Federation

References

  1. Anan'ev, B. G. (1968). Man as an Object of Cognition. Leningrad: Leningrad State University Press. 288 p.
  2. Andryashchenko, A. S. (2021). Development of systemic thinking in schoolchildren. Education in Russia and Abroad, (6), 147–152.
  3. Artemenkov, S. L. (2012). Initiative-semantical model of divergent creativity. Psychological Science and Education, (3), 1–15.
  4. Artemenkov, S. L. (2017). Network modeling of psychological constructs. Modeling and Data Analysis, (1), 9–28.
  5. Arshinov, V. I. (1999). Synergy as a phenomenon of post-non-classical science. Moscow: Institute of Philosophy, Russian Academy of Sciences. 203 p.
  6. Asmolov, A. G. (1990). Psychology of Personality. Moscow: Moscow State University Press. 367 p.
  7. Belyaev, I. A. (2007). Intentionality of holistic worldview. Bulletin of Orenburg State University, (1), 29–35.
  8. Berestneva, O. G. (2005). Simulation of intellectual competence development in students. Bulletin of Tomsk Polytechnic University, 308(2), 152–156.
  9. Budanov, V. G. (2023). Anthroposocial challenges of expanding artificial intelligence. Notes of the Institute of Psychology of the Russian Academy of Sciences, 3(2), 23–31. https://doi.org/10.38098/proceedings_2023_03_02_03
  10. Vecker, L. M. (1976). Psychological Processes. Vol. 2. Leningrad: Leningrad State University Press. 343 p.
  11. Gardieva, E. N. (2023). Calibration problem of user trust in artificial intelligence in foreign research. Organizational Psychology and Occupational Psychology, 8(3), 121–146. https://doi.org/10.38098/ipran.opwp_2023_28_3_006
  12. Grekova, A. A. (2020). Pseudopathological features of thinking in healthy university students (PhD thesis in psychology). Saint Petersburg. 220 p.
  13. Karel'ov, S. V. (2023). "Goodhart's trap" for AI: Comparative analysis problem of artificial and human intelligence. Notes of the Institute of Psychology of the Russian Academy of Sciences, 3(3), 5–23. https://doi.org/10.38098/proceedings_2023_03_03_02
  14. Karpov, A. V. (2003). Reflectivity as a mental trait and its diagnostic method. Psychological Journal, 24(5), 45–57.
  15. Karpov, A. V., & Karpov, A. A. (2022). Structure of metacognitive regulation of information processing: Monograph. Yaroslavl: Filigran'. 816 p.
  16. Kibalkhenko, I. A., & Barankova, M. S. (2021). Diagnosis of conceptual abilities in late adolescents: Relevance, problems, and prospects. In Proceedings of the International Scientific and Practical Conference "Educational Diagnostics: History, Theory, Present Day" (pp. 103–108). Rostov-on-Don: RINH.
  17. Kim, O. G. (2013). Educational activities in small groups as a factor optimizing music lessons in elementary school (PhD dissertation in psychology). Moscow. 169 p.
  18. Kiseleva, T. S. (2006). Study of personal initiative in intellectual activity. In Proceedings of the All-Russian Conference "Psychology of Individuality" (pp. 220–223).
  19. Kozlova, N. V., Sivitskaya, L. A., & Kachalov, N. A. (2006). Innovative educational technologies as a condition for the development of professional competencies of university teachers. Bulletin of Tomsk Polytechnic University, 309(4), 240–243.
  20. Kuhn, T. (1966). The Structure of Scientific Revolutions. Moscow: Nauka. 608 p.
  21. Litvinov, A. V., & Ivolina, T. V. (2013). Metacognition: Concept, structure, connection with intellectual cognitive abilities (based on foreign studies). Contemporary Foreign Psychology, (3), 59–70.
  22. Pavlova, N. D., & Grebenshchikova, T. A. (2017). Analysis of intentions: Foundations, procedure, experience of use. Moscow: Institute of Psychology, Russian Academy of Sciences. 151 p.
  23. Pazukhina, S. V. (2021). Reflexions of digital native generation in the VUCA world: Features of studying soft skills in high school students. Concept: Scientific and Methodological Electronic Journal, (12), 121–132. https://doi.org/10.24412/2304-120X-2021-11085
  24. Polanyi, M. (1985). Personal Knowledge (translated by M. B. Gnedovsky, N. M. Smirnova, B. A. Starostin). Moscow: Progress. 344 p.
  25. Raven, J. (2002). Competence in Modern Society: Discovery, Development, and Realization (translation from English). Moscow: Kogito-Center. 396 p.
  26. Savin, E. Yu. (2002). Conceptual and metacognitive experience as the basis of intellectual competence. In O. G. Kim, Educational Activity in Small Groups as a Factor Optimizing Music Classes in Elementary School (candidate dissertation in psychology, Moscow, 2002). 162 p.
  27. Siposkaya, Ya. I. (2013). Structure of intellectual competence in late adolescence. In Proceedings of the International Conference "Psychology: Science of the Future" (pp. 272).
  28. Siposkaya, Ya. I. (2014). Descriptors of intellectual competence in late adolescence. In Proceedings of the XXVII International Scientific and Practical Conference "Psychology and Pedagogy: Theoretical and Practical Aspects of Modern Sciences" (pp. 34–36).
  29. Siposkaya, Ya. I. (2015). Conceptual, metacognitive, and goal-directed descriptors of intellectual competence in late adolescence. Bulletin of St. Petersburg State University, 12(4), 22–31.
  30. Sultanova, L. B. (2004). The problem of tacit knowledge in science. Ufa: UGPTU Press. 184 p.
  31. Tikhomirov, O. K. (2008). Psychology of Thinking: Textbook for Higher Education Students. Moscow: Academy. 272 p.
  32. Ushakova, T. N. (2005). Semantic structures of speech: Name, word, utterance. Psychology. Journal of the Higher School of Economics, 2(1), 4–24.
  33. Federal State Educational Standard of Basic General Education. (2010). Approved by the order of the Ministry of Education and Science of the Russian Federation No. 1897 of December 17, 2010. Retrieved from https://fgos.ru/fgos/fgos-ooo (Accessed February 19, 2025).
  34. Kholodnaya, M. A. (2002). Psychology of Intelligence: Paradoxes of Research (2nd rev. and ext. ed.). St. Petersburg: Peter. 272 p.
  35. Kholodnaya, M. A., Berestneva, O. G., & Kostrikina, I. S. (2005). Cognitive and metacognitive prerequisites of intellectual competence in scientific and technical activities. Psychological Journal, 26(1), 51–59.
  36. Kholodnaya, M. A., & Khazova, S. A. (2017). The phenomenon of conceptualization as the basis of productivity of intellectual activity and coping behavior. Psychological Journal, 38(5), 5–17. https://doi.org/10.7868/S0205959217050014
  37. Kholodnaya, M. A. (2019). Psychology of Intelligence: Paradoxes of Research: Textbook for Undergraduates and Master’s Students (3rd rev. and ext. ed.). Moscow: Yurayt. (Series: Author’s Textbook). 334 p.
  38. Kholodnaya, M. A., & Siposkaya, Ya. I. (2023). Conceptual Abilities: Theory, Diagnostics, Empirical Evidence. Moscow: Institute of Psychology, Russian Academy of Sciences Press. 172 p. https://doi.org/10.38098/mng_23_0458
  39. Shcherbakova, O. V., Makarova, D. N., & Nikiforova, E. A. (2017). "Concept Synthesis Test" for investigating intelligence: qualitative analysis and conceptual comments. Bulletin of St. Petersburg State University. Psychology and Education, 7(2), 128–136. https://doi.org/10.21638/11701/spbu16.2017.202
  40. Shcherbakova, O. V., & Makarova, D. N. (2018). How expert knowledge works: Intelligence, conceptual abilities, and something else. St. Petersburg Psychological Journal, (22), 56–87.
  41. Yadrovskaia, E. R. (2012). Development of interpretative activity in high school students (grades 5–11) (PhD dissertation in medicine). St. Petersburg. 512 p.
  42. Iasiukova, L. A. (2005). Laws of conceptual thinking development and its role in learning. St. Petersburg: Imaton State Enterprise. 256 p.
  43. Beuk, F., & Basadur, T. (2016). Regulatory focus, task engagement, and divergent thinking: Regulatory focus and divergent thinking. Creativity and Innovation Management, 25(2), 199–210. https://doi.org/10.1111/caim.12182
  44. Bi, D., & Li, X. (2021). Psychological flexibility profiles, college adjustment, and subjective well-being among college students in China: A latent profile analysis. Journal of Contextual Behavioral Science, 20, 20–26. https://doi.org/10.1016/j.jcbs.2021.01.008
  45. Borsboom, D. A. (2017). Network theory of mental disorders. World Psychiatry, 16(1), 5–13. https://doi.org/10.1002/wps.20375
  46. Ceci, S. J., & Liker, J. K. (1986). A day at the races: A study of IQ, expertise, and cognitive complexity. Journal of Experimental Psychology: General, 115(3), 255–266. https://doi.org/10.1037/0096-3445.115.3.255
  47. Ceci, S. J., & Liker, J. K. (1987). Correction to "A day at the races: A study of IQ, expertise, and cognitive complexity". Journal of Experimental Psychology: General, 116(2), 90. https://doi.org/10.1037/0096-3445.116.2.90
  48. Chamorro-Premuzic, T., & Furnham, A. (2005). Intellectual competence. The Psychologist, 18(6), 352–354.
  49. Chamorro-Premuzic, T., & Arteche, A. (2008). Intellectual competence and academic performance: Preliminary validation of a model. Intelligence, 36, 564–573. https://doi.org/10.1016/j.intell.2008.01.001
  50. Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). New York: Routledge Academic. 567 p.
  51. Dalege, J., Borsboom, D., Van Harreveld, F., Van den Berg, H., Conner, M., & Van der Maas, H. L. J. (2015). Toward a formalized account of attitudes: The causal attitude network (CAN) model. Psychological Review, 123(1), 2–22. https://doi.org/10.1037/a0039802
  52. Hicks, J. A., Cicero, D. C., Trent, J., Chad, M., Burton, C. M., & King, L. A. (2010). Positive affect, intuition, and feelings of meaning. Journal of Personality and Social Psychology, 98(6), 967–979. https://doi.org/10.1037/a0019377
  53. Jeffords, J. R., Bayly, B. L., Bumpus, M. F., & Hill, L. G. (2020). Investigating the relationship between university students' psychological flexibility and college self-efficacy. Journal of College Student Retention: Research, Theory & Practice, 22(2), 351–372. https://doi.org/10.1177/1521025117751071
  54. Kagan, J. (1966). Reflection-impulsivity: The generality and dynamics of conceptual tempo. Journal of Abnormal Psychology, 71(1), 17–24. https://doi.org/10.1037/h0022886
  55. McNally, R. J., Robinaugh, D. J., Wu, G. W. Y., Wang, L., Deserno, M. K., & Borsboom, D. (2015). Mental disorders as causal systems: A network approach to post-traumatic stress disorder. Clinical Psychological Science, 3(6), 836–849. https://doi.org/10.1177/2167702614553230
  56. McNamara, D. (2006). Subject knowledge and its application: Problems and possibilities for teacher educators. Journal of Education for Teaching: International Research and Pedagogy, 17, 113–128. https://doi.org/10.1080/0260747910170201
  57. Raven, J. (2000). The Raven’s Progressive Matrices: Change and stability over culture and time. Cognitive Psychology, 41(1), 1–48. https://doi.org/10.1006/cogp.1999.0735
  58. Schön, D. A. (1984). The Reflective Practitioner: How Professionals Think in Action. London: Basic Books. 380 p.
  59. Scribner, S., et al. (1984). Studying working intelligence. In Everyday Cognition: Its Development in Social Context (pp. 9–40).
  60. Scribner, S., et al. (1986). Thinking in action: Some characteristics of practical thought. In Practical Intelligence: Nature and Origins of Competence in the Everyday World (Vol. 13, pp. 13–30). New York: Cambridge University Press.
  61. Shepherd, J., & Carter, J. (2023). Knowledge, practical knowledge, and intentional action. Ergo: An Open Access Journal of Philosophy, 9(21), 556–583. https://doi.org/10.3998/ergo.2277
  62. Sternberg, R. J., Forsyth, G. B., Hedlund, J., Horvath, J. A., Wagner, R. K., Williams, W. M., … Grigorenko, E. L. (2000). Practical Intelligence in Everyday Life. New York: Cambridge University Press. 268 p.
  63. Sternberg, R. J., Arezoo, S. D., & Banu, B. (2024). An empirical test of the concept of adaptively intelligent attitude. Journal of Intelligence, 12(5), 49. https://doi.org/10.3390/jintelligence12050049
  64. Chi, M. T. H., Glaser, R., & Farr, M. J. (Eds.). (1988). The Nature of Expertise. New York: Psychology Press. 470 p. https://doi.org/10.4324/9781315799681
  65. Williams, W. M., & Sternberg, R. J. (1988). Group intelligence: Why some groups are better than others. Intelligence, 12(4), 351–377. https://doi.org/10.1016/0160-2896(88)90002-5

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».