Phylogenetic analysis of coccidia (Apicomplexa: Eimeriorina) in the belica Leucaspius delineatus (Heckel, 1843)

Cover Page

Cite item

Abstract

This study was aimed to carry out a comparative analysis and reconstruction of the phylogenetic position of coccidia from the intestine of the belica Leucaspius delineatus (Heckel, 1843) from the Irkutsk Reservoir. Determination and comparative analysis of the nucleotide sequences of the cox1 gene fragment, obtained and available in genetic databases, demonstrated paraphilia of the genera Eimeria and Goussia. The sequences in the phylogenetic tree formed a distinct cluster at the base of the tree. Thus, the hypothesis that fish coccidia were ancestors of coccidia of other vertebrates was indirectly confirmed. The need for additional research and revision of coccidia in fishes from the Angara River and Lake Baikal is discussed.

About the authors

N. N. Denikina

Limnological Institute Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: denikina@lin.irk.ru
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033

N. V. Kulakova

Siberian Institute of Plant Physiology and Biochemistry Siberian Branch of the Russian Academy of Sciences

Email: denikina@lin.irk.ru
Russian Federation, Lermontova Str., 132, Irkutsk, 664033

Yu. S. Bukin

Limnological Institute Siberian Branch of the Russian Academy of Sciences

Email: denikina@lin.irk.ru
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033

T. R. Khamnueva

Institute of General and Experimental Biology Siberian Branch of the Russian Academy of Sciences

Email: denikina@lin.irk.ru
Russian Federation, Sakhyanovoy Str., 6, Ulan-Ude, 670047

D. R. Baldanova

Institute of General and Experimental Biology Siberian Branch of the Russian Academy of Sciences

Email: denikina@lin.irk.ru
Russian Federation, Sakhyanovoy Str., 6, Ulan-Ude, 670047

B. E. Bogdanov

Limnological Institute Siberian Branch of the Russian Academy of Sciences

Email: denikina@lin.irk.ru
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033

E. V. Dzyuba

Limnological Institute Siberian Branch of the Russian Academy of Sciences

Email: denikina@lin.irk.ru
Russian Federation, Ulan-Batorskaya Str., 3, Irkutsk, 664033

References

  1. Ali S., Samake J.N., Spear J. et al. 2022. Morphological identification and genetic characterization of Anopheles stephensi in Somaliland. Parasites & Vectors 15: 247. doi: 10.1186/s13071-022-05339-y
  2. Alyamkin G.V., Zhigileva O.N., Zhokhov A.E. 2022. Genetic variability of the Amur Sleeper (Perccottus glenii) and their parasite, cestode (Nippotaenia mogurndae), outside the natural area of distribution. Inland Water Biology 15: 179-188. doi: 10.1134/S1995082922010023
  3. Andreou D., Arkush K.D., Gue´gan J.-F. et al. 2012. Introduced pathogens and native freshwater biodiversity: a case study of Sphaerothecum destruens. PLoS ONE 7(5): e36998. doi: 10.1371/journal.pone.0036998
  4. Arisue N., Hashimoto T. 2015. Phylogeny and evolution of apicoplasts and apicomplexan parasites. Parasitology International 64: 254-259. doi: 10.1016/j.parint.2014.10.005
  5. Belova L.M., Krylov M.V. 2006. Coccidia (Eimeriidae) of fish (Cypriniformes) of continental waters of Russia. Parazitologiia [Parasitology] 40(5): 447-461. (in Russian)
  6. Bernery C., Bellard C.A., Courchamp F. et al. 2022. Freshwater fish invasions: a comprehensive review. Annual Review of Ecology, Evolution, and Systematics 53: 427-456. doi: 10.1146/annurev-ecolsys-032522-015551
  7. Bogdanov B.E. 2015. Variability and status of intraspecific forms of sand sculpin Leocottus kesslerii (Scorpaeniformes: Cottidae). Journal of Ichthyology. 55 (4): 386-396. doi: 10.7868/S0042875215030029
  8. Bychkov I.V., Nikitin V.M. 2015. Water-level regulation of Lake Baikal: problems and possible solutions. Geography and Natural Resources 3: 5-16. doi: 10.1134/S1875372815030014
  9. Băncilă R.I., Skolka M., Ivanova P. et al. 2022. Alien species of the Romanian and Bulgarian Black Sea coast: state of knowledge, uncertainties, and needs for future research. Aquatic Invasions 17(3): 353-373. doi: 10.3391/ai.2022.17.3.02
  10. Couso-Pérez S., Ares-Mazás E., Gómez-Couso H. 2019. First molecular data on Eimeria truttae from brown trout (Salmo trutta). Parasitology Research 118: 2121-2127. doi: 10.1007/s00436-019-06320-y
  11. Denikina N.N., Kulakova N.V., Bukin Yu.S. et al. 2023. The first detection of DNA of Caryophyllaeus laticeps (Pallas, 1781) in sunbleak Leucaspius delineatus (Heckel, 1843). Limnology and Freshwater Biology 1: 6-10. doi: 10.31951/2658-3518-2023-A-1-1
  12. Dorovskikh G.N. 2019. The parasite fauna of the Leucaspius delineatus (Heckel, 1843) from large river systems of the European north-east Russia. Vestnik Syktyvkarskogo universiteta. Seriya 2. Biologiya. Geologiya. Khimiya. Ekologiya [Syktyvkar University Bulletin. Series 2. Biology. Geology. Chemistry. Ecology] 4(12): 77-89. (in Russian)
  13. Dos Santos Q.M., Avenant-Oldewage A. 2022. Smallmouth yellowfish, Labeobarbus aeneus (Teleostei: Cyprinidae), as a potential new definitive host of the invasive parasite Atractolytocestus huronensis (Cestoda: Caryophyllidea) from common carp: example of recent spillover in South Africa? Aquatic Invasions 17(2): 259-276. doi: 10.3391/ai.2022.17.2.08
  14. Ellender B.R., Weyl O.L.F. 2014. A review of current knowledge, risk and ecological impacts associated with non-native freshwater fish introductions in South Africa. Aquatic Invasions 9: 117-132. doi: 10.3391/ai.2014.9.2.01
  15. GOST 33219-2014. 2016. Guidelines for accommodation and care of laboratory animals. Species-specific provisions for fish, amphibians and reptiles. Moscow: Standartinform Publ. (in Russian)
  16. Jastrzębski M. 1984. Coccidiofauna of cultured and feral fishes in fish farms. Wiadomosci parazytologiczne T. XXX, NR 2: 141-163
  17. Jirků M., Jirků M., Oborník M. et al. 2009. Goussia Labbé, 1896 (Apicomplexa, Eimeriorina) in Amphibia: diversity, biology, molecular phylogeny and comments on the status of the genus. Protist 160: 123-136. doi: 10.1016/j.protis.2008.08.003
  18. Jirsa F., Konecny R., Frank C. 2008. The occurrence of Caryophyllaeus laticeps in the nase Chondrostoma nasus from Austrian rivers: possible anthropogenic factors. Journal of Helminthology 82(1): 53-58. doi: 10.1017/S0022149X07873548
  19. Kaminskas S. 2021. Alien pathogens and parasites impacting native freshwater fish of southern Australia: a scientific and historical review. Australian Zoologist 41 (4): 696-730. doi: 10.7882/AZ.2020.039
  20. Kirjušina M., Vismanis K. 2007. Checklist of the parasites of fishes of Latvia. Technical Paper no. 369/3. FAO Fisheries, Rome.
  21. Kulakova N.V., Bukin Yu.S., Denikina N.N. et al. 2022. Comparative analysis and reconstruction of phylogenetic position of sunbleak Leucaspius delineatus (Heckel, 1843) from the Irkutsk Reservoir. Limnology and Freshwater Biology 5: 1639-1642. doi: 10.31951/2658-3518-2022-A-5-1639
  22. Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870-1874. doi: 10.1093/molbev/msw054
  23. Le S.Q., Gascuel O. 2008. An improved general amino acid replacement matrix. Molecular Biology and Evolution 25 (7): 1307-1320. doi: 10.1093/molbev/msn067
  24. Leray M., Yang J.Y., Meyer C.P. et al. 2013. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in Zoology 10(34): P. 1-13. doi: 10.1186/1742-9994-10-34
  25. Liu D., Brice B., Elliot A. et al. 2021. Morphological and molecular characterization of Isospora amphiboluri (Apicomplexa: Eimeriidae), a coccidian parasite, in a central netted dragon (Ctenophorus nuchalis) (De Vis, 1884) in Australia. Parasitology International 84: P. 102386. doi: 10.1016/j.parint.2021.102386
  26. Molnar K., Ostoros G. 2007. Efficacy of some anticoccidial drugs for treating coccidial enteritis of the common carp caused by Goussia carpelli (Apicomplexa: Eimeriidae). Acta Veterinaria Hungarica 55: 67-76. doi: 10.1556/AVet.55.2007.1.7
  27. Molnár K., Ostoros G., Baska F. 2005. Cross-infection experiments confirm the host specificity of Goussia spp. (Eimeriidae: Apicomplexa) parasitizing cyprinid fish. Acta Protozoologica 44: 43-49.
  28. Molnár K., Ostoros G., Dunams-Morel D. et al. 2012. Eimeria that infect fish are diverse and are related to, but distinct from, those that infect terrestrial vertebrates. Infection, Genetics and Evolution 12 (8): P. 1810-1815. doi: 10.1016/j.meegid.2012.06.017
  29. Morrison D.A. 2009. Evolution of the Apicomplexa: where are we now? Trends in Parasitology 25: 375-382. doi: 10.1016/j.pt.2009.05.010
  30. Nei M., Kumar S. 2000. Molecular evolution and phylogenetics. Oxford University Press, New York.
  31. Novokhatskaya О.V., Ieshko E.P., Sterligova O.P. 2008. Long-term changes in the parasite fauna of the bream Abramis brama L. in eutrophicated lake. Parazitologiia [Parasitology] 42(4): 308-317. (in Russian)
  32. Ogedengbe M.E., El-Sherry S., Ogedengbe J.D. et al. 2018. Phylogenies based on combined mitochondrial and nuclear sequences conflict with morphologically defined genera in the eimeriid coccidian (Apicomplexa). International Journal for Parasitology 48: 59-69. doi: 10.1016/j.ijpara.2017.07.008
  33. Pugachev O.N., Krylov M.V., Belova L.M. 2012. Fish Coccidia of the order Eimeriida of Russia and adjacent territories. St. Petersburg: ZIN RAS. (in Russian)
  34. Reshetnikov A.N., Golubtsov A.S., Zhuravlev V.B. et al. 2017. Range expansion of rotan Perccottus glenii, sunbleak Leucaspius delineatus, and bleak Alburnus alburnus in the Ob River Basin. Siberian Ecological Journal 24(6): 696-707. doi: 10.15372/SEJ20170603
  35. Rosenthal B.M., Dunams-Morela D., Ostoros G. et al. 2016. Coccidian parasites of fish encompass profound phylogenetic diversity and gave rise to each of the major parasitic groups in terrestrial vertebrates. Infection, Genetics and Evolution 40: 219-227. doi: 10.1016/j.meegid.2016.02.018
  36. Schulman S.S., Zaika V.E. 1964. Coccidia of fish of Lake Baikal. Izvestiya Sibirskogo Otdeleneya Akadamaii Nauk SSSR [Scientific journal of Siberian Branch of the USSR Academy of Sciences], series of biological and medical sciences, 8: 126-130. (in Russian)
  37. Semernoy V.P. 2001. Annelida: Oligochaeta and Aeolosomatidae. In: Timoshkin O.A. (Ed.), Index of animal species inhabiting Lake Baikal and its catchment area. Book 2. Novosibirsk: Nauka, pp. 377-427. (in Russian)
  38. Slynko Yu.V., Tereschenko V.G. 2014. Freshwater fishes of the Ponto-Caspian Basin (diversity, faunogenesis, population dynamics, adaptation mechanisms). Moscow: Polygraph Plus Publ. (in Russian)
  39. Sokolov S.G., Moshu A.Ya. 2014. Goussia obstinata sp. n. (Sporozoa: Eimeriidae), a new coccidian species from intestines of the Amur sleeper Perccottus glenii Dybowski, 1877 (Perciformes: odontobutidae. Parazitologiia [Parasitology] 48(5): 382-392. (in Russian)
  40. Tamura K., Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512-526. doi: 10.1093/oxfordjournals.molbev.a040023
  41. Truter M., Hadfield K.A., Smit N.J. 2023. Parasite diversity and community structure of translocated Clarias gariepinus (Burchell) in South Africa: Testing co-introduction, parasite spillback and enemy release hypotheses. International Journal for Parasitology: Parasites and Wildlife 20 170-179. doi: 10.1016/j.ijppaw.2023.02.004
  42. Xavier R., Severino R., Pérez-Losada M. et al. 2018. Phylogenetic analysis of apicomplexan parasites infecting commercially valuable species from the North-East Atlantic reveals high levels of diversity and insights into the evolution of the group. Parasites & Vectors 11(63): 1-12. doi: 10.1186/s13071-018-2645-7
  43. Zaika V.E. 1965. Parazitofauna ryb ozera Baikal [Parasitofauna of fish of Lake Baikal]. Moscow, Nauka publ. (in Russian)
  44. Zhu R., Chen K., Cai X. et al. 2022. The first wild record of invasive redhead cichlid, Vieja melanura (Günther, 1862), in Hainan Island, China. BioInvasions Records 11(1): 244-249. doi: 10.3391/bir.2022.11.1.25

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Деникина Н.N., Кулакова Н.V., Букин Ю.S., Хамнуева Т.R., Балданова Д.R., Богданов Б.E., Дзюба Е.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».