The role of atmospheric precipitation in the under-ice blooming of endemic dinoflagellate Gymnodinium baicalense var. minor Antipova in Lake Baikal

Cover Page

Cite item

Full Text

Abstract

The mass development of the phototrophic under-ice community is an interesting phenomenon known for the Arctic Ocean as well as for some rivers and freshwater lakes, including Lake Baikal. Species composition and productive characteristics of the under-ice phytoplankton in Lake Baikal are well studied. During the under-ice blooming, an endemic dinoflagellate Gymnodinium baicalense var. minor Antipova can have more than half of the annual primary phytoplankton production. However, there are still many questions to be answered regarding the factors limiting abundance and proliferation of the under-ice phytoplankton as well as mechanisms facilitating it to persist in Lake Baikal under conditions of the low salinity and low temperature. In present work, we studied the development dynamics of dinoflagellates and microalgae under the ice cover in Listvennichny Bay of Lake Baikal from February to April 2018. Simultaneously, the dynamics of the chemical composition and concentration of atmospheric precipitation were analysed. We observed the under-ice community with the domination of endemic dinoflagellate Gymnodinium baicalense var. minor in April. The biomass of this species considerably varied on different days from 0.04 to 10.0 x 103 mg/m3. The results of this study indicated that nutrient supply from precipitation could be an important source of nutrition for organisms developing under the ice, in particular, Gymnodinium baicalense var. minor, and could be one of the factors causing the fluctuations in its biomass. We suggested that abrupt significant increases in abundance of G. baicalense var. minor could be a result of their active migration to the area with elevated concentration of nitrogen from atmospheric precipitation. Such an ability may help this species to prosper under the ice of Lake Baikal.

About the authors

V. A. Obolkin

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: cathvolkova@mail.ru
Russian Federation, 3, Ulan-Batorskaya St., Irkutsk, 664033

E. A. Volkova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: cathvolkova@mail.ru
Russian Federation, 3, Ulan-Batorskaya St., Irkutsk, 664033

S. I. Ohira

Kumamoto University

Email: cathvolkova@mail.ru
Japan, 2-39-1, Kurokami, Kumamoto, 860-8555

K. Toda

Kumamoto University

Email: cathvolkova@mail.ru
Japan, 2-39-1, Kurokami, Kumamoto, 860-8555

O. G. Netsvetaeva

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: cathvolkova@mail.ru
Russian Federation, 3, Ulan-Batorskaya St., Irkutsk, 664033

N. S. Chebunina

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: cathvolkova@mail.ru
Russian Federation, 3, Ulan-Batorskaya St., Irkutsk, 664033

V. V. Nosova

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: cathvolkova@mail.ru
Russian Federation, 3, Ulan-Batorskaya St., Irkutsk, 664033

N. A. Bondarenko

Limnological Institute of the Siberian Branch of the Russian Academy of Sciences

Email: cathvolkova@mail.ru
Russian Federation, 3, Ulan-Batorskaya St., Irkutsk, 664033

References

  1. Annenkova N.V., Belykh O.I., Denikina N.N. et al. 2009. Identification of dinoflagellates from Lake Baikal on the basis of molecular genetic data. Doklady Biological Sciences 426: 253-256. doi: 10.1134/S001249660903@@@@
  2. Antipova N.L., Kozhov M.M. 1953. Materials on seasonal and annual fluctuations in the number of leading forms of phytoplankton of Lake Baikal. Trudy Irkutskogo Gosudarstvennogo Universiteta. Seriya ”Biologiya“ [Proceedings of the Irkutsk State University. Series ”Biology“] 7: 63-68. (In Russian)
  3. Antipova N.L. 1955. New species of the genus Gymnodinium Stein (Gymnodiniaceae) in Lake Baikal. Doklady Academii Nauk USSR [Proceeding of the USSR Academy of Sciences] 103: 325-328. (in Russian)
  4. Antipova N.L. 1963. On fluctuations in the number of species of Melozira in the plankton of Lake Baikal. Trudy Vsesoiuznogo Gidrobiologicheskogo Obshchestva [Proceedings of the All-Russian Hydrobiological Society] 8: 235-241. (in Russian)
  5. Anderson D.M. 1989. Toxic algal blooms and red tides: a global perspective. In: Okaichi T., Anderson D.M., Nemoto T. (Eds.), Red tides: Biology, environmental science and toxicology. New York, pp. 11-16.
  6. Bashenkhaeva M.V., Zakharova Y.R., Petrova D.P. et al. 2015. Sub-ice microalgal and bacterial communities in freshwater Lake Baikal, Russia. Microbial Ecology 70: 751-765. doi: 10.1007/s00248-015-0619-2
  7. Bashenkhaeva M.V., Zakharova Yu.R., Galachyants Yu.P. 2017. Bacterial communities during the period of massive under-ice Dinoflagellate development in Lake Baikal. Microbiology 86: 524-532. doi: 10.1134/S0026261717040038.
  8. Belyakova G.A., D’yakov Yu.T., Tarasova K.L. 2006. Botanika. Vol. 1: Vodorosli i griby. Moscow: Akademia. (in Russian)
  9. Belykh O.I., Bessudova A.Y., Gladkikh A.S. et al. 2011. Rukovodstvo po opredeleniyu biomassy vidov planktona pelagiali oz. Baikal. Irkutsk: Irkutsk State University. (in Russian)
  10. Rukovodstvo po khimicheskomu analizu poverkhnostnykh vod sushi. Part 1. 2009. In: Boeva L.V. (Ed.). Rostov-on-Don: NOK. (in Russian)
  11. Bondarenko N.A. 1995. Svobodnozhivushchie zhgutikovye. Ecologia. In: Timoshkin O.A. (Ed.), Atlas i opredelitel’ pelagobiontov Baikala. Novosibirsk, pp. 179-181. (in Russian)
  12. Bondarenko N.A., Guselnikova N.E., Logacheva N.F. et al. 1996. Spatial distribution of phytoplankton in Lake Baikal, spring 1991. Freshwater Biology 35: 517-523. doi: 10.1111/j.1365-2427.1996.tb01765.x
  13. Bondarenko N.A., Belykh O.I., Golobokova L.P. et al. 2012. Stratified distribution of nutrients and extremophile biota within freshwater ice covering the surface of Lake Baikal. The Journal of Microbiology 50: 8-16. doi: 10.1007/s12275-012-1251-1
  14. Bondarenko N.A., Belykh O.I., Golobokova L.P. et al. 2013. Chemical composition, bacterial and algae communities of Lake Baikal ice. Hydrobiological Journal 1: 14-28. doi: 10.1615/HydrobJ.v49.i3.20.
  15. Carty S. 2014. Freshwater Dinoflagellates of North America. Ithaca, NY: Cornell University Press.
  16. Carty S., Parrow M.W. 2015. Dinoflagellates. In: Wehr J., Shealth R., Kociolek J.P. (Eds.), Freshwater algae of North America: Ecology and classification. San Diego, CA, pp. 773-807.
  17. Chang F.H., McClean M. 1997. Growth responses of Alexandrium minutum (Dinophyceae) as a function of three different nitrogen sources and irradiance. New Zealand Journal of Marine and Freshwater Research 31: 1-7. doi: 10.1080/00288330.1997.9516740
  18. Chen X., Wang Y-H., Chun Y. et al. 2018. Atmospheric nitrogen deposition associated with the eutrophication of Taihu Lake. Hindawi Journal of Chemistry 2018. doi: 10.1155/2018/4017107.
  19. Dagenais-Bellefeuille S., Morse D. 2013. Putting the N in dinoflagellates. Frontiers in Microbiology 4. doi: 10.3389/fmicb.2013.00369.
  20. Evstafiev V.K., Bondarenko N.A., Mel’nik N.G. 2010. Long-term analysis of main trophic links dynamics in the Lake Baikal pelagic zone. Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya ”Biologiya. Ekologiya“ [The bulletin of Irkutsk State University. Series ”Biology. Ecology“] 3: 3-11. (in Russian)
  21. Grachev M.A. 2002. O sovremennom sostoyanii ecologicheskoy sistemy ozera Baikal. Novosibirsk: Siberian Branch of the Russian Academy of Sciences. (in Russian)
  22. Diatomovye vodorosli SSSR. Iskopaemye i sovremennye. Vol. 2, issue 1. 1988. In: Glezer Z.I., Makarova I.V., Moiseeva A.I. et al. (Eds.). Leningrad: Nauka. (In Russian)
  23. Diatomovye vodorosli SSSR. Iskopaemye i sovremennye. Vol. 2, issue 2. 1992. In: Makarova I.V. (Ed.). SPb: Nauka. (In Russian)
  24. Jeong H.J., Park J.Y., Nho J.H. et al. 2005. Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquatic Microbial Ecology 41: 131-143. doi: 10.3354/ame041131
  25. Hallegraeff G.M. 2003. Harmful algal blooms: A global overview. In: Hallegraeff G.M., Anderson D.M., Cembella A.D. et al. (Eds.), Manual on harmful marine microalgae. Monographs on oceanographic methodology. Paris, pp. 25-49.
  26. Harrison W.G. 1976. Nitrate metabolism of the red tide dinoflagellate Gonyaulux polyedra Stein. Journal of Experimental Marine Biology and Ecology 21: 199-209. doi: 10.1016/0022-0981(76)90115-5.
  27. Jewson D.H., Granin N.G., Zhdanov A.Z. et al. 2009. Effect of snow depth on under-ice irradiance and growth of Aulacoseira baicalensis in Lake Baikal. Aquatic Ecology 43: 673-679. doi: 10.1007/s10452-009-9267-2
  28. Kamykowski D. 1995. Trajectories of autotrophic marine dinoflagellates. Journal of Phycology 31: 200-208. doi: 10.1111/j.0022-3646.1995.00200.x.
  29. Kirchner M., Sahling G., Uhlig G. et al. 1996. Does the red tide-forming dinoflagellate Noctiluca scintillans feed on bacteria? Sarsia 81: 45-55. doi: 10.1080/00364827.1996.10413610.
  30. Kiselev I.A. 1956. Methods of plankton research. In: Skarlato O.A. (Ed.), Life in fresh waters of the USSR. Vol 4. Moscow, pp. 140-416. (in Russian)
  31. Kozhov M.M. 1955. Seasonal and annual changes in Lake Baikal plankton. Trudy Vsesoiuznogo Gidrobiologicheskogo Obshchestva [Proceedings of the All-Russian Hydrobiological Society] 6: 133-157. (in Russian)
  32. Kozhova O.M. 1957. Horizontal distribution of planktonic algae in Lake Baikal. Izvestia Vostochnyh Filialov Akademii Nauk SSSR [Proceedings of the Eastern Branches of the USSR Academy of Sciences] 4: 5. (in Russian)
  33. Kozhova O.M. 1959. About the under-ice bloom of Lake Baikal. Botanicheskii Zhurnal [Botanical Journal] 77: 1001-1004. (in Russian)
  34. Kozhova O.M. 1960. Phytoplankton of Baikal in the area of Listvennichny Bay and its influence on the formation of plankton flora of the Irkutsk reservoir. Izvestia Sibirskogo Otdeleniya Akademii Nauk SSSR [Proceedings of the Siberian Branch of the USSR Academy of Sciences] 12: 120-130. (in Russian)
  35. Kozhova O.M. 1961. On periodic changes in the development of Lake Baikal phytoplankton. Trudy Vsesoiuznogo Gidrobiologicheskogo Obshchestva [Proceedings of the All-Russian Hydrobiological Society] 9: 28-43. (in Russian)
  36. Khodzher T.I., Domysheva V.M., Sorokovikova L.M. et al. 2017. Current chemical composition of Lake Baikal water. Inland Waters 7: 250-258. doi: 10.1080/20442041.2017.1329982.
  37. Kopp C., Pernice M., Domart-Coulon I. et al. 2013. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. mBio 4. doi: 10.1128/mBio.00052-13.
  38. Landsberg J.L. 2002. The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science 10: 113-389. DOI: https://doi.org/10.1080/20026491051695
  39. Maguer J.-F., Helguen L., Madec S. et al. 2007. Nitrogen uptake and assimilation kinetics in Alexandrium minutum (Dinophyceae): Effect of N-limited growh rate on nitrate and ammonium interactions. Journal of Phycology 43: 295-303. doi: 10.1111/j.1529-8817.2007.00334x.
  40. Matvienko O.M., Litvinenko R.M. 1977. Pirofitovi vodorosti — Pyrrophyta. Vyznachnyk presnovodnykh vodorostey Ukrayin’skoyi RSR. Vol. 3, part 2. Kiev: Naukova Dumka. (in Ukrainian)
  41. Obolkina L.A., Bondarenko N.A., Doroshenko L.F. et al. 2000.On finding a cryophilic community in Lake Baikal. Doklady Akademii Nauk [Proceeding of the Russian Academy of Sciences] 371: 815-817. (in Russian)
  42. Phillips K.A., Fawley M.W. 2002. Winter phytoplankton blooms under ice associated with elevated oxygen levels. Journal of Phycology 38: 1068-1073. doi: 10.1046/j.1529-8817.2002.01044.x.
  43. Popovskaya G.I. Ecological monitoring of phytoplankton in Lake Baikal. 2000. Aquatic Ecosystem Health and Management 3: 215-225. doi: 10.1080/14634980008657017
  44. Popovskaya G.I., Genkal S.I., Likhoshvai E.V. 2011. Diatomovye vodorosli planktona ozera Baikal: Atlas-opredelitel’. Novosibirsk: Nauka. (in Russian)
  45. Roenneberg T., Rehman J. 1996. Nitrate, a nonphotic signal for the circadian system. The FASEB Journal 10: 1443-1447. doi: 10.1096/fasebj.10.12.8903515
  46. Różańska M., Gosselin M., Poulin M. et al. 2009. Influence of environmental factors on the development of bottom ice protist communities during the winter–spring transition. Marine Ecology Progress Series 386: 43-59. doi: 10.3354/meps08092
  47. Russell K.M., Galloway J.N., Macko S.A. et al. 1998. Sources of nitrogen in wet deposition to the Chesapeake-Bay region. Atmospheric Environment 32: 2453-2465. doi: 10.1016/S1352-2310(98)00044-2
  48. Shimaraev M.N., Verbolov V.I., Granin N.G. et al. 1994. Physical limnology of Lake Baikal: A review. Irkutsk-Okayama: BICER Publishers.
  49. Smayda T.J. 1997. Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnology and Oceanography 42: 1137-1153. doi: 10.4319/lo.1997.42.5_part_2.1137.
  50. Spilling K. 2007. Dense sub-ice bloom of dinoflagellates in the Baltic Sea, potentially limited by high pH. Journal of Phytoplankton Research 29: 895-901. doi: 10.1093/plankt/fbm067.
  51. Votintsev K.K., Mesheryakova A.I., Popovskaya G.I. 1975. Krugovorot organicheskogo veshchestva v ozere Baikal. Novosibirsk: Nauka. (in Russian)
  52. Wetzel R.G., Likens G.E. 1991. Limnological analyses. New York: Springer-Verlag.
  53. Zhai S.J., Yang L.Y., Hu W.P. 2009. Observations of atmospheric nitrogen and phosphorus deposition during the period of algal bloom formation in northern Lake Taihu, China. Environment Management 44: 542-551. doi: 10.1007/s00267-009-9334-4.
  54. Zheng T., Cao H., Liu W. et al. 2019. Characteristics of atmospheric deposition during the period of algal bloom formation in urban water bodies. Sustainability 11. doi: 10.3390/su11061703.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Obolkin V.A., Volkova E.A., Ohira S.I., Toda K., Netsvetaeva O.G., Chebunina N.S., Nosova V.V., Bondarenko N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».