Different rates of molecular evolution of mitochondrial genes in Baikalian and non-Baikalian amphipods
- Authors: Romanova E.V.1, Sherbakov D.Y.1,2
-
Affiliations:
- Limnological Institute of the Siberian Branch of the Russian Academy of Sciences
- Irkutsk State University
- Issue: No 6 (2019)
- Pages: 339-344
- Section: Articles
- URL: https://ogarev-online.ru/2658-3518/article/view/284729
- DOI: https://doi.org/10.31951/2658-3518-2019-A-6-339
- ID: 284729
Cite item
Full Text
Abstract
Rates of molecular evolution in eight protein-coding mitochondrial genes from two parallel lineages of Baikalian amphipods were compared to those in the representatives of gen. Gammarus. In six genes (Atp6, Cox2, Cox3, Nad1, Nad5, Nad6), there was a significant acceleration in the evolutionary rate of Baikalian species over those from Gammarus group. Correlation of the absolute rate of base substitution accumulation and the acceleration was insignificant, that allowed us to propose mostly adaptive reasons for the effect found.
Keywords
About the authors
E. V. Romanova
Limnological Institute of the Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: sherb@lin.irk.ru
Russian Federation, 3, Ulan-Batorskaya St., Irkutsk, 664033
D. Yu. Sherbakov
Limnological Institute of the Siberian Branch of the Russian Academy of Sciences; Irkutsk State University
Email: sherb@lin.irk.ru
Russian Federation, 3, Ulan-Batorskaya St., Irkutsk, 664033; 1, Karl Marx St., Irkutsk, 664003
References
- Bromham L., Cowman P.F., Lanfear R. 2013. Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evolutionary Biology 13. doi: 10.1186/1471-2148-13-126
- Cock P.A., Antao T., Chang J.T. et al. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422-1423. doi: 10.1093/bioinformatics/btp163
- Cormier A., Wattier R., Teixeira M. et al. 2018. The complete mitochondrial genome of Gammarus roeselii (Crustacea, Amphipoda): insights into mitogenome plasticity and evolution. Hydrobiologia 825: 197-210. doi: 10.1007/s10750-018-3578-z
- Ellegren H., Galtier N. 2016. Determinants of genetic diversity. Nature Reviews Genetics 17. doi: 10.1038/nrg.2016.58
- Fazalova V., Nevado B., Peretolchina T. et al. 2010. When environmental changes do not cause geographic separation of fauna: differential responses of Baikalian invertebrates. BMC Evolutionary Biology 10: 988-999. doi: 10.1016/j.ympev.2018.07.002
- Fourdrilis S., de Frias Martins A.M., Backeljau T. 2018. Relation between mitochondrial DNA hyperdiversity, mutation rate and mitochondrial genome evolution in Melarhaphe neritoides (Gastropoda: Littorinidae) and other Caenogastropoda. Scientific Reports 8: 1-12. doi: 10.1038/s41598-018-36428-7
- Gouy M., Guindon S., Gascuel O. 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27: 221-224. doi: 10.1093/molbev/msp259
- Hou Z., Sket B. 2016. A review of Gammaridae (Crustacea: Amphipoda): the family extent, its evolutionary history, and taxonomic redefinition of genera. Zoological Journal of the Linnean Society 176: 323-348. doi: 10.1111/zoj.12318
- Huerta-Cepas J., Dopazo J., Gabaldón T. 2010. ETE: a python Environment for Tree Exploration. BMC Bioinformatics 11. doi: 10.1186/1471-2105-11-24
- Kalyaanamoorthy S., Minh B.Q., Wong T.K. et al. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14. doi: 10.1038/nmeth.4285
- Kamaltynov R.M. 2009. Amfipoda: Gammaroidea in Angara and Yenisei rivers. In: Timoshkin O.A. (Ed.), Index of animal species inhabiting Lake Baikal and its catchment area. Novosibirsk, pp. 297-329. (in Russian)
- Katoh K., Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780. doi: 10.1093/molbev/mst010
- Krebes L., Bastrop R. 2012. The mitogenome of Gammarus duebeni (Crustacea Amphipoda): a new gene order and non-neutral sequence evolution of tandem repeats in the control region. Comparative Biochemistry and Physiology Part D: Genomics and Proteomics 7: 201-211. doi: 10.1016/j.cbd.2012.02.004
- Lanfear R., Ho S.Y., Love D. et al. 2010. Mutation rate is linked to diversification in birds. Proceedings of the National Academy of Sciences 107: 20423-20428. doi: 10.1073/pnas.1007888107
- Macdonald III K.S., Yampolsky L., Duffy J.E. 2005. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Molecular Phylogenetics and Evolution 35: 323-343. doi: 10.1016/j.ympev.2005.01.013
- Macher J.N., Leese F., Weigand A.M. et al. 2017. The complete mitochondrial genome of a cryptic amphipod species from the Gammarus fossarum complex. Mitochondrial DNA Part B 2: 17-18. doi: 10.1080/23802359.2016.1275844
- Mann H.B., Whitney D.R. 1947. On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics 18: 50-60.
- Naumenko S.A., Logacheva M.D., Popova N.V. et al. 2017. Transcriptome-based phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection. Molecular Ecology 26: 536-553. doi: 10.1111/mec.13927
- Nguyen L.T., Schmidt H.A., von Haeseler A. et al. 2014. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274. doi: 10.1093/molbev/msu300
- Pinkster S. 1983. The value of morphological characters in taxonomy of Gammarus. Beaufortia 33: 15-28.
- Rabosky D.L. 2019. Phylogenies and diversification rates: variance cannot be ignored. Systematic Biology 68: 538-550. doi: 10.1093/sysbio/syy079
- Romanova E.V., Aleoshin V.V., Kamaltynov R.M. et al. 2016. Evolution of mitochondrial genomes in Baikalian amphipods. BMC Genomics 17. doi: 10.1186/s12864-016-3357-z
- Romanova E.V., Bukin Y.S., Mikhailov K.V. et al. 2020. Hidden cases of tRNA gene duplication and remolding in mitochondrial genomes of amphipods. Molecular Phylogenetics and Evolution 144. doi: 10.1016/j.ympev.2019.106710
- Shao R., Dowton M., Murrell A. et al. 2003. Rates of gene rearrangement and nucleotide substitution are correlated in the mitochondrial genomes of insects. Molecular Biology and Evolution 20: 1612-1619. doi: 10.1093/molbev/msg176
- Sun S., Wu Y., Ge X. et al. 2020. Disentangling the interplay of positive and negative selection forces that shaped mitochondrial genomes of Gammarus pisinnus and Gammarus lacustris. Royal Society Open Science 7. doi: 10.1098/rsos.190669
- Wiens J.J., Scholl J.P. 2019. Diversification rates, clade ages, and macroevolutionary methods. Proceedings of the National Academy of Sciences 116: 24400-24400. doi: 10.1073/pnas.1915908116
Supplementary files
