Justification of membrane filtration parameters in the production of whey protein isolate

封面

如何引用文章

全文:

详细

The research was aimed at studying the combined effect of micro- and ultrafiltration technological parameters for justification of rational modes in the production of whey protein isolate. The process flow of whey protein isolate production was determined. It includes whey purification from casein dust and fat, pasteurization, ultrafiltration, microfiltration, ultrafiltration (combined with diafiltration), spray drying. Concentration was carried out from a dry matter mass fraction of 5.4-5.6% to 11.3-12.6% (protein concentration factor is 6.5-13). Microfiltration of the resulting retentate was used to maximize disposal of milk fat. The process was carried out using ceramic membranes (pore size from 0.14 pm to 1.4 pm). Their protein retention capacity was 0.2-0.4%, fat retention capacity was 64.6-76.2%. Rational microfiltration modes were selected. They are inlet pressure 0.15-0.2 MPa and temperature 10-15 °C. The microfiltration permeate was treated via repeated ultrafiltration combining it with diafiltration. It was possible to achieve the protein content in dry matter of the product not more than 87% using diafiltration with half the volume of water. However, it does not meet the requirements for the isolate. Increasing the amount of water for diafiltration caused a rise in the protein content in dry matter of the concentrate. The protein mass fraction in the whey protein isolate before drying was at least 17%. The whey protein isolate powder was characterized by the high protein content (93% in terms of SNF), quality and safety indicators met the requirements of regulatory documentation.

作者简介

E. Melnikova

Voronezh State University of Engineering Technologies

Email: ek-v-b@yandex.ru
19, Revolution Avenue, Voronezh, 394036

E. Stanislavskaya

Voronezh State University of Engineering Technologies

Email: ek-v-b@yandex.ru
19, Revolution Avenue, Voronezh, 394036

E. Bogdanova

Voronezh State University of Engineering Technologies

Email: ek-v-b@yandex.ru
19, Revolution Avenue, Voronezh, 394036

E. Shabalova

Voronezh State University of Engineering Technologies

Email: ek-v-b@yandex.ru
19, Revolution Avenue, Voronezh, 394036

参考

  1. Мельникова, Е.И., Станиславская, Е.Б. (2022). Перспективные сывороточные ингредиенты для пищевой промышленности. Переработка молока, 11(277), 12-14. https://doi.org/10.33465/2222-5455-2022-11-12-14
  2. Bannikova, A.V., Evdokimov, I.A. (2015). The scientific and practical principles of creating products with increased protein content. Foods and Raw Materials, 3(2), 3-12. https://doi.org/10.12737/13114
  3. Melnikova, E. I., Stanislavskaya, E.B., Fedorova, A. R. (26-29 February, 2020). Modification of the whey protein cluster for the utilization in low-calorie food technology. IOP Conference Series: Earth and Environmental Science. International Conference on Production and Processing of Agricultural Raw Materials. Voronezh, Russian Federation, 2021. https://doi.org/10.1088/1755-1315/640/3/032014
  4. Zhao, C., Chen, N., Ashaolu, T.J. (2022). Whey proteins and peptides in health-promoting functions — A review. International Dairy Journal, 126, Article 105269. https://doi.org/10.1016/j.idairyj.2021.105269
  5. Topel, A. (2007). Chemistry and physics of milk. Behr, 2007. (In German)
  6. Гунькова, П. И., Горбатова, К. К. (2015). Биотехнологические свойства белков молока. СПб: ГИОРД, 2015.
  7. Ельчанинов, В.В. (2022). Номенклатура и свойства белков молока коровы (Bos taurus). Барнаул: Издательство Алтайского университета, 2022.
  8. Ahmad, T., Aadil, R. M., Ahmed, H., Rahman, U., Soares, B. C. V., Souza, S. L. Q. et al. (2019). Treatment and utilization of dairy industrial waste: A review. Trends in Food Science and Technology, 88, 361-372. https://doi.org/10.1016/j.tifs.2019.04.003
  9. Короткий, И. А., Плотников, И. Б., Мазеева, И. А. (2019). Современные тенденции в переработке молочной сыворотки. Техника и технология пищевых производств, 49(2), 227-234. https://doi.org/10.21603/2074-9414-2019-2-227-234
  10. Володин, Д. Н., Гридин, А. С., Евдокимов, И. А. (2020). Перспективы производства сухих белковых ингредиентов на основе молочного сырья. Молочная промышленность, 1, 28-30.
  11. Храмцов, А. Г. (2011). Феномен молочной сыворотки. СПб.: Профессия, 2011.
  12. Володин, Д. Н., Топалов, В. К., Евдокимов, И. А., Куликова, И. К., Шрамко, М. И. (2022). Комплексный подход к производству белковых ингредиентов на основе молочного сырья. Молочная промышленность, 1, 34-36.
  13. Damar, I., Cinar, K., Gulec, H. A. (2020). Concentration of whey proteins by ultrafiltration: Comparative evaluation of process effectiveness based on physicochemical properties of membranes. International Dairy Journal, 111, Article 104823. https://doi.org/10.1016/j.idairyj.2020.104823
  14. Cancino, B., Espina, V., Orellana, C. (2006). Whey concentration using microfiltration and ultrafiltration. Desalination, 200(1-3), 557-558. https://doi.org/10.1016/j.desal.2006.03.463
  15. Reig, М., Vecino, Х., Cortina, J.L. (2021). Use of membrane technologies in dairy industry: An overview. Foods, 10(11), Article 2768. https://doi.org/10.3390/foods10112768
  16. Челноков, В. В., Михайлов, А. В., Заболотная, Е. (2020). Актуальность использования в промышленных масштабах мембранных технологий в Российской Федерации. Успехи в химии и химической технологии, 34(6(229)), 69-71.
  17. Лялин, В. А., Михеев, М. С. (2020). Мембранные технологии и оборудование в молочной промышленности. Переработка молока, 12(254), 28-31.
  18. Tamime, A. Y. (2012). Membrane processing: Dairy and beverage applications. Chichester; Ames, IO: Wiley-Blackwell, 2012.
  19. Steinhauer, T., Leeb, E., Birle, D., Kulozik, U. (2016). Determination of a molecular fouling model for the micro- and ultrafiltration of whey: A recombination study from single whey proteins to complex mixtures. International Dairy Journal, 52, 50-56. https://doi.org/10.1016/j.idairyj.2015.08.006
  20. Володин, Д. Н., Топалов, В.К., Евдокимов, И. А., Куликова, И.К. (2020). Влияние производственных процессов на функционально-технологические свойства концентратов сывороточных белков. Молочная промышленность, 5, 46-49.
  21. Verruck, S., Sartor, S., Marenda, F.B., Barros, E. L. S., Camelo-Silva, C., Canella, M. H. M. et al. (2019). Influence of heat treatment and microfiltration on the milk proteins properties. Advances in Food Technology and Nutritional Sciences, 5(2), 54-66. http://doi.org/10.17140/AFTNSOJ-5-157
  22. Ostertag, F., Krolitzki, E., Berensmeier, S., Hinrichs, J. (2023). Protein valorisation from acid whey — Screening of various micro- and ultrafiltration membranes concerning the filtration performance. International Dairy Journal, 146, Article 105745. https://doi.org/10.1016/j.idairyj.2023.105745
  23. Arunkumar, A. Molitor, M. S., Etzel, M. R. (2016). Comparison of flat-sheet and spiral-wound negatively-charged wide-pore ultrafiltration membranes for whey protein concentration. International Dairy Journal, 56, 129-133. https://doi.org/10.1016/j.idairyj.2016.01.012
  24. Babenyshev, S. P., Evdokimov, I. A., Bratsikhin, A. A., Anisimov, G. S., Zhidkov, V. E., Mamay, D. S. (2019) Experimental determination of parameters for milk whey microfiltration process. Journal of Hygienic Engineering and Design, 28, 85-95.
  25. Mourouzidis-Mourouzis, S. A., Karabelas, A. J. (2006). Whey protein fouling of microfiltration ceramic membranes — Pressure effects. Journal of Membrane Science, 282(1-2), 124-132. https://doi.org/10.1016/j.memsci.2006.05.012
  26. Barukcic, I., Bozanic, R., Kulozik, U. (2014). Effect of pore size and process temperature on flux, microbial reduction and fouling mechanisms during sweet whey cross-flow microfiltration by ceramic membranes. International Dairy Journal, 39(1), 8-15. https://doi.org/10.1016/j.idairyj.2014.05.002
  27. Rezaei, H., Ashtiani, F. Z., Fouladitajar, A. (2011). Effects of operating parameters on fouling mechanism and membrane flux in cross-flow microfiltration of whey. Desalination, 274(1-3), 262-271. https://doi.org/10.1016/j.desal.2011.02.015
  28. Heidebrecht, H.-J., Kulozik, U. (2019). Data concerning the fractionation of individual whey proteins and casein micelles by microfiltration with ceramic gradient membranes. Data in Brief, 25, Article 104102. https://doi.org/10.1016/j.dib.2019.104102
  29. Carter, B., DiMarzo, L., Pranata, J., Barbano, D. M., Drake, M. (2021). Determination of the efficiency of removal of whey protein from sweet whey with ceramic microfiltration membranes. Journal of Dairy Science, 104(7), 7534-7543. https://doi.org/10.3168/jds.2020-18698
  30. Carter, B., DiMarzo, L., Pranata, J., Barbano, D. M., Drake, M. (2021). Efficiency of removal of whey protein from sweet whey using polymeric microfiltration membranes. Journal of Dairy Science, 104(8), 8630-8643. https://doi.org/10.3168/jds.2020-18771
  31. Barukčić, I., Božanić, R., Kulozik, U. (2015). Influence of process temperature and microfiltration pre-treatment on flux and fouling intensity during cross-flow ultrafiltration of sweet whey using ceramic membranes. International Dairy Journal, 51, 1-7. https://doi.org/10.1016/j.idairyj.2015.07.002
  32. Steinhauer, T., Hanély, S., Bogendörfer, K., Kulozik, U. (2015). Temperature dependent membrane fouling during filtration of whey and whey proteins. Journal of Membrane Science, 492, 364-370. https://doi.org/10.1016/j.mem-sci.2015.05.053
  33. Baldasso, C., Barros, T.C., Tessaro, I.C. (2011). Concentration and purification of whey proteins by ultrafiltration. Desalination, 278(1-3), 381-386. https://doi.org/10.1016/j.desal.2011.05.055

补充文件

附件文件
动作
1. JATS XML

版权所有 © Melnikova E.I., Stanislavskaya E.B., Bogdanova E.V., Shabalova E.D., 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».