Использование технологии омического нагрева в процессе переработки плодов и овощей. Обзор предметного поля
- Авторы: Бурак Л.Ч.1, Сапач А.Н.1
-
Учреждения:
- Общество с ограниченной ответственностью «БЕЛРОСАКВА»
- Выпуск: Том 7, № 1 (2024)
- Страницы: 59-70
- Раздел: Статьи
- URL: https://ogarev-online.ru/2618-9771/article/view/311336
- DOI: https://doi.org/10.21323/2618-9771-2024-7-1-59-70
- ID: 311336
Цитировать
Полный текст
Аннотация
Ключевые слова
Об авторах
Л. Ч. Бурак
Общество с ограниченной ответственностью «БЕЛРОСАКВА»
Email: aleksandr@belrosakva.by
кандидат технических наук, директор, Общество с ограниченной ответственностью «БЕЛРОСАКВА»220118, Республика Беларусь, Минск, ул. Шаранговича, 19, офис 718Tел.: +375–29–646–65–25
А. Н. Сапач
Общество с ограниченной ответственностью «БЕЛРОСАКВА»
Email: aleksandr@belrosakva.by
инженер-химик, Общество с ограниченной ответственностью «БЕЛРОСАКВА»220118, Республика Беларусь, Минск, ул. Шаранговича, 19, офис 718Tел.: +375–29–756–95–19
Список литературы
- Jaeger, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K.-H., Knorr, D. et al. (2016). Opinion on the use of ohmic heating for the treatment of foods. Trends in Food Science and Technology, 55, 84–97. https://doi.org/10.1016/j.tifs.2016.07.007
- Бурак, Л.Ч., Завалей, А.П. (2021). Исследование соков с высокой антиоксидантной активностью, консервированных омической пастеризацией. Технологии пищевой и перерабатывающей промышленности АПК — продукты здорового питания, 4, 38–47. https://doi.org/10.24412/2311-6447-2021-4-38-47
- Makroo, H. A., Prabhakar, P. K., Rastogi, N. K., Srivastava, B. (2019). Characterization of mango puree based on total soluble solids and acid content: Effect on physico-chemical, rheological, thermal and ohmic heating behavior. LWT, 103, 316–324. https://doi.org/10.1016/j.lwt.2019.01.003
- Gavahian, M., Chu, Y.-H., Sastry, S. (2018). Extraction from food and natural products by moderate electric field: Mechanisms, benefits, and potential industrial applications. Comprehensive Reviews in Food Science and Food Safety, 17(4), 1040–1052. https://doi.org/10.1111/15414337.12362
- Tian, X., Yu, Q., Wu, W., Dai, R. (2018). Inactivation of microorganisms in foods by ohmic heating: A review. Journal of Food Protection, 81(7), 1093–1107. https://doi.org/10.4315/0362-028X.JFP-17-343
- Kim, S.-S., Lee, J.-I., Kang, D.-H. (2019). Resistance of Escherichia coli O157: H7 ATCC35150 to ohmic heating as influenced by growth temperature and sodium chloride concentration in salsa. Food Control, 103, 119–125. https://doi.org/10.1016/j.foodcont.2019.03.037
- Suebsiri, N., Kokilakanistha, P., Laojaruwat, T., Tumpanuvatr, T., Jittanit, W. (2019). The application of ohmic heating in lactose-free milk pasteurization in comparison with conventional heating, the metal contamination, and the ice cream products. Journal of Food Engineering, 262, 39–48. https://doi.org/10.1016/j.jfoodeng.2019.05.017
- Gavahian, M., Chu, Y.-H., Farahnaky, A. (2019). Effects of ohmic and microwave cooking on textural softening and physical properties of rice. Journal of Food Engineering, 243, 114–124. https://doi.org/10.1016/j.jfoodeng.2018.09.010
- Ramírez-Jiménez, A. K., Rangel-Hernández, J., Morales-Sánchez, E., LoarcaPiña, G., Gaytán-Martínez, M. (2019). Changes on the phytochemicals profile of instant corn flours obtained by traditional nixtamalization and ohmic heating process. Food Chemistry, 276, 57–62. https://doi.org/10.1016/j.foodchem.2018.09.166
- Aydin, C., Kurt, Ü., Kaya, Y. (2020). Comparison of the effects of ohmic and conventional heating methods on some quality parameters of the hot-smoked fish Pâté. Journal of Aquatic Food Product Technology, 29(4), 407–416. https://doi.org/10.1080/10498850.2020.1741752
- Lyng, J. G., Clemente, I., McKenna, B. M. (2019). Ohmic pasteurization of meat and meat products. Chapter in a book: Handbook of farm, dairy and food machinery engineering. Amsterdam: Elsevier Inc. 2019. https://doi.org/10.1016/B978-0-12-814803-7.00023-3
- Achir, N., Dhuique-Mayer, C., Hadjal, T., Madani, K., Pain, J.-P., Dornier, M. (2016). Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innovative Food Science and Emerging Technologies, 33, 397–404. https://doi.org/10.1016/j.ifset.2015.11.002
- Cokgezme, O. F., Sabanci, S., Cevik, M., Yildiz, H., Icier, F. (2017). Performance analyses for evaporation of pomegranate juice in ohmic heating assisted vacuum system. Journal of Food Engineering, 207, 1–9. https://doi.org/10.1016/j.jfoodeng.2017.03.015
- Icier, F., Yildiz, H., Sabanci, S., Cevik, M., Cokgezme, O. F. (2017). Ohmic heating assisted vacuum evaporation of pomegranate juice: Electrical conductivity changes. Innovative Food Science and Emerging Technologies, 39, 241–246. https://doi.org/10.1016/j.ifset.2016.12.014
- Moreno, J., Simpson, R., Pizarro, N., Pavez, C., Dorvil, F., Petzold, G. et al. (2013). Influence of ohmic heating/osmotic dehydration treatments on polyphenoloxidase inactivation, physical properties and microbial stability of apples (cv. Granny smith). Innovative Food Science and Emerging Technologies, 20, 198–207. https://doi.org/10.1016/j.ifset.2013.06.006
- Moreno, J., Echeverria, J., Silva, A., Escudero, A., Petzold, G., Mella, K. et al. (2017). Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology. Food Science and Technology International, 23(5), 448–456. https://doi.org/10.1177/1082013217701354
- Moreno, J., Zúñiga, P., Dorvil, F., Petzold, G., Mella, K., Bugueño, G. (2017). Osmodehydration assisted by ohmic heating/pulse vacuum in apples (cv. Fuji): Retention of polyphenols during refrigerated storage. International Journal of Food Science and Technology, 52(5), 1203–1210. https://doi.org/10.1111/ijfs.13385
- Farahnaky, A., Kamali, E., Golmakani, M. T., Gavahian, M., Mesbahi, G., Majzoobi, M. (2017). Effect of ohmic and microwave cooking on some bioactive compounds of kohlrabi, turnip, potato, and radish. Journal of Food Measurement and Characterization, 12(4), 2561–2569. https://doi.org/10.1007/s11694-018-9873-6
- Jittanit, W., Khuenpet, K., Kaewsri, P., Dumrongpongpaiboon, N., Hayamin, P., Jantarangsri, K. (2017). Ohmic heating for cooking rice: Electrical conductivity measurements, textural quality determination and energy analysis. Innovative Food Science and Emerging Technologies, 42, 16–24. https://doi.org/10.1016/j.ifset.2017.05.008
- Lascorz, D., Torella, E., Lyng, J. G., Arroyo, C. (2016). The potential of ohmic heating as an alternative to steam for heat processing shrimps. Innovative Food Science and Emerging Technologies, 37(C), 329–335. https://doi.org/10.1016/j.ifset.2016.06.014
- Soghani, B. N., Azadbakht, M., Darvishi, H. (2018). Ohmic blanching of white mushroom and its pretreatment during microwave drying. Heat and Mass Transfer, 54(12), 3715–3725. https://doi.org/10.1007/s00231-018-2393-4
- Bender, D., Gratz, M., Vogt, S., Fauster, T., Wicki, B., Pichler, S. et al. (2019). Ohmic heating — A novel approach for gluten-free bread baking. Food and Bioprocess Technology, 12(9), 1603–1613. https://doi.org/10.1007/s11947-019-02324-9
- Masure, H. G., Wouters, A. G. B., Fierens, E., Delcour, J. A. (2019). Electrical resistance oven baking as a tool to study crumb structure formation in glutenfree bread. Food Research International, 116, 925–931. https://doi.org/10.1016/j.foodres.2018.09.029
- Gavahian, M., Sastry, S., Farhoosh, R., Farahnaky, A. (2020). Ohmic heating as a promising technique for extraction of herbal essential oils: Understanding mechanisms, recent findings, and associated challenges. Advances in Food and Nutrition Research, 91, 227–273. https://doi.org/10.1016/bs.afnr.2019.09.001
- Kristinawati, A., Nikmatin, S., Irmansyah, Setyaningsih, D. (19–20 August 2019). Extraction of citronella oil using an ohmic heating method. IOP Conference Series: Earth and Environmental Science. West Java, Indonesia. 2019. https://doi.org/10.1088/1755-1315/460/1/012014
- Termrittikul, P., Jittanit, W., Sirisansaneeyakul, S. (2018). The application of ohmic heating for inulin extraction from the wet-milled and drymilled powders of Jerusalem artichoke (Helianthus tuberosus L.) tuber. Innovative Food Science and Emerging Technologies, 48, 99–110. https://doi.org/10.1016/j.ifset.2018.05.022
- Duygu, B., Ümit, G. (2015). Application of ohmic heating system in meat thawing. Procedia — Social and Behavioral Sciences, 195, 2822–2828. https://doi.org/10.1016/j.sbspro.2015.06.400
- Wongsa-Ngasri, P., Sastry, S. K. (2016). Tomato peeling by ohmic heating: Effects of lye-salt combinations and post-treatments on weight loss, peeling quality and firmness. Innovative Food Science and Emerging Technologies, 34, 148–153. https://doi.org/10.1016/j.ifset.2016.01.013
- Wongsa-Ngasri, P., Sastry, S. K. (2016). Tomato peeling by ohmic heating with lye-salt combinations: Effects of operational parameters on peeling time and skin diffusivity. Journal of Food Engineering, 186, 10–16. https://doi.org/10.1016/j.jfoodeng.2016.04.005
- Farahnaky, A., Azizi, R., Gavahian, M. (2012). Accelerated texture softening of some root vegetables by ohmic heating. Journal of Food Engineering, 113(2), 275– 280. https://doi.org/10.1016/j.jfoodeng.2012
- Makroo, H. A., Saxena, J., Rastogi, N. K., Srivastava, B. (2017). Ohmic heating assisted polyphenol oxidase inactivation of watermelon juice: Effects of the treatment on pH, lycopene, total phenolic content, and color of the juice. Journal of Food Processing and Preservation, 41(6), Article e13271. https://doi.org/10.1111/jfpp.13271
- Muhammad, A. I., Shitu, A., Tadda, M. A. (2019). Ohmic heating as alternative preservation technique — A review. Arid Zone Journal of Engineering, Technology and Environment, 15(2), 268–277.
- Vicente, A., de Castro, I., Teixeira, J. A., Machado, L. F. (2011). Ohmic heating treatment. Chapter in a book: Handbook of food safety engineering. Hoboken, NJ: Blackwell Publishing, 2011. https://doi.org/10.1002/9781444355321.ch27
- Cappato, L. P., Ferreira, M. V. S., Guimaraes, J. T., Portela, J. B., Costa, A. L. R., Freitas, M. Q. et al. (2017). Ohmic heating in dairy processing: Relevant aspects for safety and quality. Trends in Food Science and Technology, 62, 104–112. https://doi.org/10.1016/j.tifs.2017.01.010
- Silva, V. L. M., Santos, L. M. N. B. F., Silva, A. M. S. (2017). Ohmic heating: An emerging concept in organic synthesis. Chemistry — A European Journal, 23(33), 7853–7865. https://doi.org/10.1002/chem.201700307
- Hashemi, S. M. B., Roohi, R. (2019). Ohmic heating of blended citrus juice: Numerical modeling of process and bacterial inactivation kinetics. Innovative Food Science and Emerging Technologies, 52, 313–324. https://doi.org/10.1016/j.ifset.2019.01.012
- Li, X., Xu, X., Wang, L., Regenstein, J. M. (2019). Effect of ohmic heating on physicochemical properties and the key enzymes of water chestnut juice. Journal of Food Processing and Preservation, 43(4), Article e13919. https://doi.org/10.1111/jfpp.13919
- Darvishi, H., Hosainpour, A., Nargesi, F., Fadavi, A. (2015). Exergy and energy analyses of liquid food in an ohmic heating process: A case study of tomato production. Innovative Food Science and Emerging Technologies, 31, 73–82. https://doi.org/10.1016/j.ifset.2015.06.012
- Khue, D. N., Tiep, H. T., Dat, L. Q., Kim Phung, L. T., Tam, L. N. (2020). Influence of frequency and temperature on the inactivation of salmonella enterica serovar enteritidis in ohmic heating of pomelo juice. LWT, 129, Article 109528. https://doi.org/10.1016/j.lwt.2020.109528
- Doan, N. K., Lai, Q. D., Le, T. K. P., Le, N. T. (2021). Influences of AC frequency and electric field strength on changes in bioactive compounds in ohmic heating of pomelo juice. Innovative Food Science and Emerging Technologies, 72, Article 102754. https://doi.org/10.1016/j.ifset.2021.102754
- Shao, L., Liu, Y., Tian, X., Yu, Q., Wang, H., Li, X. et al. (2021). Inactivation and recovery of Staphylococcus aureus in milk, apple juice and broth treated with ohmic heating. LWT, 139, Article 110545. https://doi.org/10.1016/j.lwt.2020.110545
- Rodríguez, L. M. N., Arias, R., Soteras, T., Sancho, A., Pesquero, N., Rossetti, L. et al. (2021). Comparison of the quality attributes of carrot juice pasteurized by ohmic heating and conventional heat treatment. LWT, 145, Article 111255. https://doi.org/10.1016/j.lwt.2021.111255
- Kumar, T. (2020). Development of a laboratory scale ohmic heating system for pasteurization of grape juice. Journal of Pharmacognosy and Phytochemistry, 9(3), 235–238.
- Sudheer, K. P., Ashitha, G. N., Prince, M. V. (2020). Mild thermal processing of cashew apple juice using ohmic heating. Journal of Tropical Agriculture, 58(1), 44–52.
- Hardinasinta, G., Salengke, S., Mursalim, Muhidong, J. (7–9 October 2020). Evaluation of ohmic heating for sterilization of berry-like fruit juice of mulberry (Morus nigra), bignay (Antidesma bunius), and jambolana (Syzygium cumini). IOP Conference Series: Materials Science and Engineering, Volume 1034, 2nd International Conference on Mechanical Engineering Research and Application (iCOMERA 2020), Malang, Indonesia, 2020. https://doi.org/10.1088/1757–899x/1034/1/012050
- Brochier, B., Mercali, G. D., Marczak, L. D. F. (2018). Effect of ohmic heating parameters on peroxidase inactivation, phenolic compounds degradation and color changes of sugarcane juice. Food and Bioproducts Processing, 111, 62–71. https://doi.org/10.1016/j.fbp.2018.07.003
- Darvishi, H., Mohammadi, P., Fadavi, A., Saba, M. K., Behroozi-Khazaei, N. (2019). Quality preservation of orange concentrate by using hybrid ohmic — Vacuum heating. Food Chemistry, 289, 292–298. https://doi.org/10.1016/j.foodchem.2019.03.043
- Ferreira, M. V. S., Cappato, L. P., Silva, R., Rocha, R. S., Guimarães, J. T., Balthazar, C. F. et al. (2019). Ohmic heating for processing of whey-raspberry flavored beverage. Food Chemistry, 297, Article 125018. https://doi.org/10.1016/j.foodchem.2019.125018
- Makroo, H. A., Prabhakar, P. K., Rastogi, N. K., Srivastava, B. (2019). Characterization of mango puree based on total soluble solids and acid content: Effect on physico-chemical, rheological, thermal and ohmic heating behavior. LWT, 103, 316–324. https://doi.org/10.1016/j.lwt.2019.01.003
- Fadavi, A., Yousefi, S., Darvishi, H., Mirsaeedghazi, H. (2018). Comparative study of ohmic vacuum, ohmic, and conventional-vacuum heating methods on the quality of tomato concentrate. Innovative Food Science and Emerging Technologies, 47, 225–230. https://doi.org/10.1016/j.ifset.2018.03.004
- Hwang, J. H., Jung, A. H., Park, S. H. (2022). Efficacy of ohmic vacuum concentration for orange juice concentrates and their physicochemical properties under different voltage gradients. LWT, 154, Article 112750. https://doi.org/10.1016/j.lwt.2021.112750
- Sabanci, S., Icier, F. (2022). Evaluation of an ohmic assisted vacuum evaporation process for orange juice pulp. Food and Bioproducts Processing, 131,156–163. https://doi.org/10.1016/j.fbp.2021.09.009
- Sabanci, S., Çevik, M., Göksu, A. (2021). Investigation of time effect on pectin production from citrus wastes with ohmic heating assisted extraction process. Journal of Food Process Engineering, 44(6), Article e13689. https://doi.org/10.1111/jfpe.13689
- Norouzi, S., Fadavi, A., Darvishi, H. (2021). The ohmic and conventional heating methods in concentration of sour cherry juice: Quality and engineering factors. Journal of Food Engineering, 291, Article 110242. https://doi.org/10.1016/j.jfoodeng.2020.110242
- Sabanci, S., Icier, F. (2021). Enhancement of the performance of sour cherry juice concentration process in vacuum evaporator by assisting Ohmic heating source. Food and Bioproducts Processing, 122, 269–279. https://doi.org/10.1016/j.fbp.2020.05.004
- Darvishi, H., Behroozi-Khazaei, N., Saba, M. K., Alimohammadi, Z., Nourbakhsh, H. (2021). The influence of ohmicvacuum heating on phenol, ascorbic acid and engineering factors of kiwifruit juice concentration process. International Journal of Food Science and Technology, 56(9), 4789–4798. https://doi.org/10.1111/IJFS.15160
- Cevik, M. (2021). Electrical conductivity and performance evaluation of verjuice concentration process using ohmic heating method. Journal of Food Process Engineering, 44(5), Article e13672. https://doi.org/10.1111/jfpe.13672
- Barron-García, O. Y., Gaytán-Martínez, M., Ramírez-Jiménez, A. K., LuzardoOcampo, I., Velazquez, G., Morales-Sánchez, E. (2021). Physicochemical characterization and polyphenol oxidase inactivation of Ataulfo mango pulp pasteurized by conventional and ohmic heating processes. LWT, 143, Article 111113. https://doi.org/10.1016/j.lwt.2021.111113
- Makroo, H. A., Rastogi, N. K., Srivastava, B. (2017). Enzyme inactivation of tomato juice by ohmic heating and its effects on physico-chemical characteristics of concentrated tomato paste. Journal of Food Process Engineering, 40(3), Article e12464. https://doi.org/10.1111/jfpe.12464
- Brochier, B., Hertz, P. F., Marczak, L. D. F., Mercali, G. D. (2020). Influence of ohmic heating on commercial peroxidase and sugarcane juice peroxidase inactivation. Journal of Food Engineering, 284, Article 110066. https://doi.org/10.1016/j.jfoodeng.2020.110066
- Saxena, J., Makroo, H. A., Srivastava, B. (2016). Optimization of timeelectric field combination for PPO inactivation in sugarcane juice by ohmic heating and its shelf life assessment. LWT — Food Science and Technology, 71, 329–338. https://doi.org/10.1016/j.lwt.2016.04.015
- Morales-Sánchez, E., Díaz-Cruz, A., Regalado, C., Velázquez, G., González-Jasso, E., Gaytán-Martínez, M. (2019). Inactivation of mango pectinmethylesterase by ohmic heating. Revista Bio Ciencias, 6, Article e665. https://doi.org/10.15741/revbio.06.e665
- Jakob, A., Bryjak, J., Wojtowicz, H., Illeová, V., Annus, J., Polakovič, M. (2010). Inactivation kinetics of food enzymes during ohmic heating. Food Chemistry, 123(2), 369–376. https://doi.org/10.1016/j.foodchem.2010.04.047
- İçier, F., Yildiz, H., Baysal, T. (2008). Polyphenoloxidase deactivation kinetics during ohmic heating of grape juice. Journal of Food Engineering, 85(3), 410–417. https://doi.org/10.1016/j.jfoodeng.2007.08.002
- Kumar, V., Jain, S. K., Amitabh, A., Chavan, S. M. (2021). Effect of ohmic heating on physicochemical, bioactive compounds, and shelf life of watermelon fleshrind drinks. Journal of Food Process Engineering, 45(7) Article e13818. https://doi.org/10.1111/jfpe.13818
- Rodrigues, N. P., Brochier, B., de Medeiros, J. K., Marczak, L. D. F., Mercali, G. D. (2021). Phenolic profile of sugarcane juice: Effects of harvest season and processing by ohmic heating and ultrasound. Food Chemistry, 347, Article 129058. https://doi.org/10.1016/j.foodchem.2021.129058
- Khuenpet, K., Jittanit, W. (2020). The effects of pasteurization by conventional and ohmic heating methods and concentration processes on the Madan (Garcinia schomburgkiana Pierre) juice properties. Applied Engineering in Agriculture, 36(2), 205–219. https://doi.org/10.13031/aea.13618
- Darvishi, H., Salami, P., Fadavi, A., Saba, M. K. (2020). Processing kinetics, quality and thermodynamic evaluation of mulberry juice concentration process using Ohmic heating. Food and Bioproducts Processing, 123, 102–110. https://doi.org/10.1016/j.fbp.2020.06.003
- Doan, K. N., Lai, D. Q., Kim Le, P. T., Le, T. N. (2021). Inactivation of pectin methylesterase and Lactobacillus plantarum by ohmic heating in pomelo juice. International Journal of Food Science and Technology, 56(4), 1987–1995. https://doi.org/10.1111/ijfs.14830
- Debbarma, T., Thangalakshmi, S., Tadakod, M., Singh, R., Singh, A. (2021). Comparative analysis of ohmic and conventional heat-treated carrot juice. Journal of Food Processing and Preservation, 45(9), Article e15687. https://doi.org/10.1111/jfpp.15687
- Cho, W.-I., Kim, E.-J., Hwang, H.-J., Cha, Y.-H., Cheon, H. S., Choi, J.-B. et al. (2017). Continuous ohmic heating system for the pasteurization of fermented red pepper paste. Innovative Food Science and Emerging Technologies, 42,190– 196. https://doi.org/10.1016/j.ifset.2017.07.020
- Priyadarshini, A., Rayaguru, K., Nayak, P. K., Lenka, C. (2021). Efficiency of ohmic heating for microbial inactivation in mango (Mangifera indica L.) pulp. International Journal of Pharmaceutical Research,13(1), 4460-4465. https://doi.org/10.31838/ijpr/2021.13.01.592
- Sarkis, J. R., Jaeschke, D. P., Mercali, G. D., Tessaro, I. C., Marczak, L. D. F. (2019). Degradation kinetics of anthocyanins in blackberry pulp during ohmic and conventional heating. International Food Research Journal, 26(1), 87–97.
- Darvishi, H., Saba, M. K., Behroozi-Khazaei, N., Nourbakhsh, H. (2020). Improving quality and quantity attributes of grape juice concentrate (molasses) using ohmic heating. Journal of Food Science and Technology, 57(4), 1362–1370. https://doi.org/10.1007/s13197-01904170-1
- Junqua, R., Carullo, D., Ferrari, G., Pataro, G., Ghidossi, R. (2021). Ohmic heating for polyphenol extraction from grape berries: An innovative prefermentary process. OENO One, 55(3), 39–51. https://doi.org/10.20870/oeno-one.2021.55.3.4647
- Kutlu, N., Isci, A., Sakiyan, O., Yilmaz, A. E. (2021). Effect of ohmic heating on ultrasound extraction of phenolic compounds from cornelian cherry (Cornus mas). Journal of Food Processing and Preservation, 45(10), Article e15818. https://doi.org/10.1111/jfpp.15818
- Rinaldi, M., Littardi, P., Paciulli, M., Ganino, T., Cocconi, E., Barbanti, D. et al. (2020). Impact of ohmic heating and high pressure processing on qualitative attributes of ohmic treated peach cubes in syrup. Foods, 9(8), Article 1093. https://doi.org/10.3390/foods9081093
- Sabanci, S., Cevik, M., Cokgezme, O. F., Yildiz, H., Icier, F. (2019). Quality characteristics of pomegranate juice concentrates produced by ohmic heating assisted vacuum evaporation. Journal of the Science of Food and Agriculture, 99(5), 2589–2595. https://doi.org/10.1002/jsfa.9474
- Ghadiri, H., Ziaifar, A. M., Ghorbani, M., Aghazadeh, S. (2020). Use of Ohmic heating system in peeling tomato and its effect on physicochemical properties of the product. Journal of Food Research, 30(2), 57–68.
- Priyadarshini, A., Rayaguru, K., Nayak, P. K. (2020). Influence of Ohmic heating on fruits and vegetables: A review. Journal of Critical Reviews, 7(19), 1952–1959.
- Mannozzi, C., Rompoonpol, K., Fauster, T., Tylewicz, U., Romani, S., Rosa, D. M. et al. (2019). Influence of pulsed electric field and fruit and vegetable juices. Foods, 8(7), Article 247. https://doi.org/10.3390/foods8070247
- Rinaldi, M., Littardi, P., Ganino, T., Aldini, A., Rodolfi, M., Barbanti, D. et al. (2020). Comparison of physical, microstructural, antioxidant and enzymatic properties of pineapple cubes treated with conventional heating, ohmic heating and high-pressure processin. LWT, 134, Article 110207. https://doi.org/10.1016/j.lwt.2020.110207
- Alkanan, Z. T., Al-Hilphy, A. R. S., Altemimi, A. B., Mandal, R., Pratap-Singh, A. (2021). Comparison of quality characteristics of tomato paste produced under ohmic-vacuum combination heating and conventional heating. Applied Food Research, 1(2), Article 100014. https://doi.org/10.1016/J.AFRES.2021.100014
- Tunç, M. T., Akdoğan, A., Baltacı, C., Kaya, Z., Odabaş, H. İ. (2022). Production of grape pekmez by Ohmic heating-assisted vacuum evaporation. Food Science and Technology International, 28(1), 72–84. https://doi.org/10.1177/1082013221991616
- Kanjanapongkul, K., Baibua, V. (2021). Effects of ohmic pasteurization of coconut water on polyphenol oxidase and peroxidase inactivation and pink discoloration prevention. Journal of Food Engineering, 292, Article 110268. https://doi.org/10.1016/j.jfoodeng.2020.110268
- Alkanan, Z. T., Altemimi, A. B., Al-Hilphy, A. R. S., Watson, D. G., Pratap-Singh, A. (2021). Ohmic heating in the food industry: Developments in concepts and applications during 2013–2020. Applied Sciences (Switzerland), 11(6), Article 2507. https://doi.org/10.3390/app11062507
- Cokgezme, O. F., Icier, F. (2019). Effect of voltage gradient on ohmic thawing characteristics of sour cherry juice concentrates for the temperature range of –18 °С to +4 °С. Food Science and Technology International, 25(8), 659–670. https://doi.org/10.1177/1082013219857897
- Cao, X., Islam, M. N., Xu, W., Chen, J., Chitrakar, B., Jia, X. et al. (2020). Energy consumption, colour, texture, antioxidants, odours, and taste qualities of litchi fruit dried by intermittent ohmic heating. Foods, 9(4), Article 425. https://doi.org/10.3390/foods9040425
- Poojitha, P., Athmaselvi, K. A. (2020). Effect of ohmic blanching on drying kinetics, physicochemical and functional properties of garlic powder. Journal of Food Science and Technology, 60, 845–855. https://doi.org/10.1007/s13197-020-04676-z
- Kutlu, N. (2022). Optimization of ohmic heating-assisted osmotic dehydration as a pretreatment for microwave drying of quince. Food Science and Technology International, 28(1), 60–71. https://doi.org/10.1177/1082013221991613
- Moreno, J., Simpson, R., Estrada, D., Lorenzen, S., Moraga, D., Almonacid, S. (2011). Effect of pulsed-vacuum and ohmic heating on the osmodehydration kinetics, physical properties and microstructure of apples (cv. Granny smith). Innovative Food Science and Emerging Technologies, 12(4), 562–568. https://doi.org/10.1016/j.ifset.2011.06.011
- Moreno, J., Espinoza, C., Simpson, R., Petzold, G., Nuñez, H., Gianelli, M. P. (2016). Application of ohmic heating/vacuum impregnation treatments and air drying to develop an apple snack enriched in folic acid. Innovative Food Science and Emerging Technologies, 33, 381–386. https://doi.org/10.1016/j.ifset.2015.12.014
- Rinaldi, M., Langialonga, P., Dhenge, R., Aldini, A., Chiavaro, E. (2021). Quality traits of apple puree treated with conventional, ohmic heating and high-pressure processing. European Food Research and Technology, 247(7), 1679–1688. https://doi.org/10.1007/s00217-021-03738-6
- Moreno, J., Gonzales, M., Zúñiga, P., Petzold, G., Mella, K., Muñoz, O. (2017). Ohmic heating and pulsed vacuum effect on dehydration processes and polyphenol component retention of osmodehydrated blueberries (cv. Tifblue). Innovative Food Science and Emerging Technologies, 36, 112–119. https://doi.org/10.1016/j.ifset.2016.06.005
- Moreno, J., Simpson, R., Pizarro, N., Parada, K., Pinilla, N., Reyes, J. E. et al. (2012). Effect of ohmic heating and vacuum impregnation on the quality and microbial stability of osmotically dehydrated strawberries (cv. Camarosa). Journal of Food Engineering, 110(2), 310–316. https://doi.org/10.1016/j.jfoodeng.2011.03.005
- Kumar, A., Begum, A., Hoque, M., Hussain, S., Srivastava, B. (2021). Textural degradation, drying and rehydration behaviour of ohmically treated pineapple cubes. LWT, 142, Article 110988. https://doi.org/10.1016/j.lwt.2021.110988
- Torshizi, M. V., Azadbakht, M., Kashaninejad, M. (2020). Application of response surface method to energy and exergy analyses of the ohmic heating dryer for sour orange juice. Fuel, 278, Article 118261. https://doi.org/10.1016/j.fuel.2020.118261
- Fadavi, A., Salari, S. (2019). Ohmic heating of lemon and grapefruit juices under vacuum pressure — Comparison of electrical conductivity and heating rate. Journal of Food Science, 84(10), 2868–2875. https://doi.org/10.1111/1750-3841.14802
- Abedelmaksoud, T. G., Mohsen, S. M., Duedahl-Olesen, L., Elnikeety, M. M., Feyissa, A. H. (2019). Impact of ohmicsonication treatment on pectinmethylesterase in not-from-concentrate orange juice. Journal of Food Science and Technology, 56(8), 3951–3956. https://doi.org/10.1007/s13197-019-03834-2
- Abedelmaksoud, T. G., Mohsen, S. M., Duedahl-Olesen, L., Elnikeety, M. M., Feyissa, A. H. (2019). Optimization of ohmicsonication for overall quality characteristics of NFC apple juice. Journal of Food Processing and Preservation, 43(9), Article e14087. https://doi.org/10.1111/jfpp.14087
- Pereira, R. N., Coelho, M. I., Genisheva, Z., Fernandes, J. M., Vicente, A. A., Pintado, M. E. et al. (2020). Using Ohmic heating effect on grape skins as a pretreatment for anthocyanins extraction. Food and Bioproducts Processing, 124, 320–328. https://doi.org/10.1016/j.fbp.2020.09.009
- Wongsa-Ngasri, P., Sastry, S. K. (2015). Effect of ohmic heating on tomato peeling. LWT, 61(2), 269–274. https://doi.org/10.1016/j.lwt.2014.12.053
- Indiarto, R., Rezaharsamto, B. (2020). A review on ohmic heating and its use in food. International Journal of Scientific and Technology Research, 9(2), 485–490.
- Alkanan, Z. T., Al-Hilphy, A. R. S., Altemimi, A. B., Mandal, R., Pratap-Singh, A. (2021). Comparison of quality characteristics of tomato paste produced under ohmic-vacuum combination heating and conventional heating. Applied Food Research, 1(2), Article 100014. https://doi.org/10.1016/J.AFRES.2021.100014
- Wang, R., Farid, M. M. (2015). Corrosion and health aspects in ohmic cooking of beef meat patties. Journal of Food Engineering, 146, 17–22. https://doi.org/10.1016/j.jfoodeng.2014.08.011
Дополнительные файлы
