Ослабление индуцируемой доксорубицином нефротоксичности у мышей с раком молочной железы путем использования комбинации зеленого чая и моринги: акцент на антиоксидантные, апоптические, воспалительные и гистопатологические аспекты

Обложка

Цитировать

Полный текст

Аннотация

Индуцируемая доксорубицином (DXR) нефротоксичность продолжает вызывать большую обеспокоенность при лечении рака и требует эффективного предотвращения повреждения почек. Целью данного исследования является оценка нефропротективного потенциала зеленого чая и моринги в 1% и 2% водных экстрактах при индуцированном доксорубицином повреждении почек у самок мышей Balb/C с раком молочной железы. Тридцать шесть самок мышей Balb/C были разделены на шесть групп следующим образом: здоровый контроль; мыши с раком молочной железы, индуцированным клетками 4T1; здоровые мыши, получавшие DXR; мыши с индуцированным раком молочной железы, получавшие DXR; мыши с индуцированным раком молочной железы, получавшие DXR и 1%-ю комбинацию зеленого чая и моринги; мыши с индуцированным раком молочной железы, получавшие DXR и 2%-ю комбинацию зеленого чая и моринги. Переменными эксперимента были масса тела, объем опухоли, активность антиоксидантных ферментов (CAT, GPx, SOD), маркеры окислительного стресса (TOS, TAC, OSI), провоспалительные цитокины (IL‑1, TNF‑α), и гены апоптоза и связанные с воспалением гены (BAX, BCL2, NLRP3, NFKB). Также был проведен гистологический анализ почек для анализа повреждений клеток. Обработка DXR приводила к снижению массы тела и увеличению ферментов почек, что указывало на повреждение почек. Уровни этих ферментов были значимо снижены в результате применения комбинации травяных экстрактов, особенно при концентрации 2%, что говорит от нефропротективных свойствах. Экстракты трав возвращали активности антиоксидантных ферментов к нормальному уровню и снижали маркеры окислительного стресса в почках в результате повышения уровней CAT, GPx, и SOD, и снижения уровней TOS и OSI. Кроме того, обработка травами также снижала уровни провоспалительных цитокинов и влияла на экспрессию генов, связанных с апоптозом; BAX был негативно регулирован, BCL2 был позитивно регулирован, что способствовало увеличению выживаемости клеток и снижению воспаления. Экстракты также снижали NLRP3/NFKB в почках обработанных DXR мышей дозозависимым образом. На основании этих результатов сделан вывод, что 1% и 2% водные экстракты смеси листьев зеленого чая и моринги (соотношение 1:1) могут считаться пригодной комбинацией для снижения индуцируемой DOX нефоротоксичности и повреждения почек у пациентов с раком.

Об авторах

А. Х. Лафтах

Факультет науки о пище, Cельскохозяйственный колледж, Университет Басры

Автор, ответственный за переписку.
Email: Sadiq.khalaf@uobasrah.edu.iq
61004, Ирак

Н. Алхулфи

Факультет науки о пище, Cельскохозяйственный колледж, Университет Басры

Email: Sadiq.khalaf@uobasrah.edu.iq
61004, Ирак

С. К. Эль-Салейт

Онкологическое отделение, больница Аль-Садр

Email: Sadiq.khalaf@uobasrah.edu.iq
Басра, 61004

Т. Г. Абедельмаксуд

Кафедра пищевых наук, Сельскохозяйственный факультет, Каирский университет

Email: Sadiq.khalaf@uobasrah.edu.iq
12613, Египет, Гиза, ул. Гамаа, 1

Список литературы

  1. Islamuddin, M., Qin, X. (2024). Renal macrophages and NLRP3 inflammasomes in kidney diseases and therapeutics. Cell Death Discovery, 10(1), Article 229. https://doi.org/10.1038/s41420-024-01996-3
  2. Kubat, G. B., Özler, M., Ulger, O., Ekinci, Ö., Atalay, Ö., Çelik, E. et al. (2020). The effects of mesenchymal stem cell mitochondrial transplantation on doxorubicin-mediated nephrotoxicity in rats. Journal of Biochemical and Molecular Toxicology, 35(1), Article e22612. https://doi.org/10.1002/jbt.22612
  3. Charles, I. J., Okayo, O. D. (2021). Prevention of doxorubicin-induce renal function abnormalities by turmeric in Wistar rats. GSC Biological and Pharmaceutical Sciences, 14(3), 143–156. https://doi.org/10.30574/gscbps.2021.14.3.0070
  4. Peter, S., Alven, S., Maseko, R. B., Aderibigbe, B. A. (2022). Doxorubicin-based hybrid compounds as potential anticancer agents: A review. Molecules, 27(14), Article 4478. https://doi.org/10.3390/molecules27144478
  5. Angela, I. F. D., Dalimunthe, A., Harahap, U., Satria, D. (2023). Effect of andaliman (Zanthoxylum acanthopodium DC.) ethanol extract on doxorubicin-induced toxicity on hematology in male rats. Journal of Drug Delivery and Therapeutics, 13(3), 27–29. https://doi.org/10.22270/jddt.v13i3.5975
  6. Amarasiri, S. S., Attanayake, A. P., Arawwawala, L. D. A. M., Jayatilaka, K. A. P. W., Mudduwa, L. K. B. (2021). Nephroprotective activity of Vetiveria zizanioides (L.) Nash supplement in doxorubicin-induced nephrotoxicity model of Wistar rats. Journal of Food Biochemistry, 45(9), Article e13901. https://doi.org/10.1111/jfbc.13901
  7. Furcea, D. M., Agrigoroaie, L., Mihai, C.-T., Gardikiotis, I., Dodi, G., Stanciu, G. D. et al. (2022). 18F-FDG PET/MRI imaging in a preclinical rat model of cardiorenal syndrome — an exploratory study. International Journal of Molecular Sciences, 23(23), Article 15409. https://doi.org/10.3390/ijms232315409
  8. Teibo, J., Bello, S., Olagunju, A., Olorunfemi, F., Ajao, O., Fabunmi, O. (2020). Functional foods and bioactive compounds: Roles in the prevention, treatment and management of neurodegenerative diseases. GSC Biological and Pharmaceutical Sciences, 11(2), 297–313. https://doi.org/10.30574/gscbps.2020.11.2.0143
  9. Anyene, I. C., Ergas, I. J., Kwan, M. L., Roh, J. M., Ambrosone, C. B., Kushi, L. H. et al. (2021). Plant-based dietary patterns and breast cancer recurrence and survival in the pathways study. Nutrients, 13(10), Article 3374. https://doi.org/10.3390/nu13103374
  10. Al-Temimi, W. K. A., Al- Garory, N. H. S., Khalaf, A. A. (2020). Diagnose the bioactive compounds in flaxseed extract and its oil and use their mixture as an antioxidant. Basrah Journal of Agricultural Sciences, 33(1), 172–188. https://doi.org/10.37077/25200860.2020.33.1.13
  11. Hussain, M. A., Abogresha, N. M., Kader, G. A., Hassan, R., Abdelaziz, E. Z., Greish, S. M. (2021). Antioxidant and anti-inflammatory effects of crocin ameliorate doxorubicin-induced nephrotoxicity in rats. Oxidative Medicine and Cellular Longevity, 2021(1), Article 8841726. https://doi.org/10.1155/2021/8841726
  12. Owumi, S. E., Lewu, D. O., Arunsi, U. O., Oyelere, A. K. (2021). Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Human and Experimental Toxicology, 40(10), 1656–1672. https://doi.org/10.1177/09603271211006171
  13. Shi, H., Zhao, X., Peng, Q., Zhou, X., Liu, S., Sun, C. et al. (2023). Green tea polyphenols alleviate kidney injury induced by Di(2-ethylhexyl) phthalate in mice. American Journal of Nephrology, 55(1), 86–105. https://doi.org/10.1159/000534106
  14. Arabzadeh, E., Norouzi Kamareh, M., Ramirez-Campillo, R., Mirnejad, R., Masti, Y., Shirvani, H. (2022). Twelve weeks of treadmill exercise training with green tea extract reduces myocardial oxidative stress and alleviates cardiomyocyte apoptosis in aging rat: The emerging role of bnip3 and HIF‑1α/IGFBP3 pathway. Journal of Food Biochemistry, 46(12), Article e14397. https://doi.org/10.1111/jfbc.14397
  15. Nishat, R. J., Halim, M. R., Islam, M. M., Hamid, T., Ahmed, K. N., Hasan, R. et al. (2022). Effect of green tea on gentamicin induced nephrotoxicity in Long Evans male rats. Bangladesh Critical Care Journal, 10(2), 127–134. https://doi.org/10.3329/bccj.v10i2.62206
  16. Adeoye, S. W. A., Adeshina, O. S., Yusuf, M. G., Omole, A. (2022). Hepatoprotective and renoprotective effect of Moringa oleifera seed oil on dichlorvos-induced toxicity in male Wistar rats. Nigerian Journal of Physiological Sciences, 37(1), 119–126. https://doi.org/10.54548/njps.v37i1.15
  17. Putri, I. S., Siwi, G. N., Budiani, D. R., Rezkita, B. E. (2023). Protective effect of moringa seed extract on kidney damage in rats fed a high-fat and high-fructose diet. Journal of Taibah University Medical Sciences, 18(6), 1545–1552. https://doi.org/10.1016/j.jtumed.2023.07.001
  18. Lukiswanto, B. S., Wijayanti, H., Fadhila, Y. N., Yuniarti, W. M., Arimbi, A., Suprihati, E. et al. (2022). Protective effect of Moringa oleifera leaves extract against gentamicin induced hepatic and nephrotoxicity in rats. Iraqi Journal of Veterinary Sciences, 37(1), 129–135. https://doi.org/10.33899/ijvs.2022.133276.2197
  19. Elsayed, F. I., Elgendey, F., Waheed, R. M., El-Shemy, M. A. (2021). Protective effect of moringa oleifera seed extract on cisplatin induced nephrotoxicity in rats. International Journal of Pharmacy and Pharmaceutical Sciences, 13(5), 78–82. https://doi.org/10.22159/ijpps.2021v13i5.41125
  20. Sebastian, D., Shankar, K. G., Ignacimuthu, S., Fleming, A. T., Sebastian, D. (2019). Detection of synergistic effect of three plant extracts against pathogenic bacteria. International Journal of Research and Analytical Reviews, 6(2), 438-449.
  21. Wang, Y., Yang, H., Chen, L., Jafari, M., Tang, J. (2021). Network-based modeling of herb combinations in traditional Chinese medicine. Briefings in Bioinformatics, 22(5), Article bbab106. https://doi.org/10.1093/bib/bbab106
  22. Sojoodi, M., Wei, L., Erstad, D. J., Yamada, S., Fujii, T., Hirschfield, H. et al. (2020). Epigallocatechin gallate induces hepatic stellate cell senescence and attenuates development of hepatocellular carcinoma. Cancer Prevention Research, 13(6), 497–508. https://doi.org/10.1158/1940-6207.capr‑19-0383
  23. Wu, Z., Sun, L., Chen, R., Wen, S., Li, Q., Lai, X. et al. (2022). Chinese tea alleviates CCl4-induced liver injury through the nf-κbornrf2signaling pathway in C57BL‑6J mice. Nutrients, 14(5), Article 972. https://doi.org/10.3390/nu14050972
  24. Shubhangini, C., Jaiganesh, R., Rajeshkumar, S. (2023). Green synthesis of zinc oxide nanoparticles using chamomile and green tea extracts and evaluation of their anti-inflammatory and antioxidant activity: An in vitro study. Cureus, 15(9), Article e46088. https://doi.org/10.7759/cureus.46088
  25. Zhang, Y., Qu, X., Gao, H., Zhai, J., Tao, L., Sun, J. et al. (2020). Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH‑induced liver injury via regulating SIRT1 pathway. International Immunopharmacology, 85, Article 106634. https://doi.org/10.1016/j.intimp.2020.106634

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Лафтах А.Х., Алхулфи Н., Эль-Салейт С.К., Абедельмаксуд Т.Г., 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».