Задача Пифагора и ее применение
- Authors: Ilyasova A.A.1
-
Affiliations:
- Derzhavin Tambov State University
- Issue: Vol 7, No 4 (2023)
- Pages: 574-582
- Section: Mathematics and mechanics
- Published: 13.01.2026
- URL: https://ogarev-online.ru/2542-2340/article/view/365298
- ID: 365298
Cite item
Abstract
Using the example of one of the most ancient number-theoretic problems – the Pythagorean problem – schoolchildren can demonstrate the connections between various mathematical disciplines, at first glance, completely unrelated to each other. The Pythagorean problem establishes a connection between number theory, geometry, and mathematical analysis. The paper considers a brief history of the Pythagorean problem, provides arithmetic and geometric ways of solving it, the connection with Diophantine equations, the use of solutions to the Pythagorean problem to obtain rational parametrization of conic sections, as well as for calculating integrals containing irrationality.
About the authors
Alexandra A. Ilyasova
Derzhavin Tambov State University
Author for correspondence.
Email: 19alexandra99@mail.ru
Master’s Degree Student in “Mathematics (Teaching Mathematics and Computer Science)” Programme
Russian Federation, 33 Internatsionalnaya St., Tambov, 392000, Russian FederationReferences
- Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Математика. Геометрия: 7–9-е классы: базовый уровень: учебник. 4-е изд., перераб. М.: Просвещение, 2023. 416 с.
- Литцман В. Теорема Пифагора. М.: Гос. изд-во физ.-мат. лит., 1960. 114 с.
- Оре О. Приглашение в теорию чисел. М.: Наука, 1980. 128 с.
- Острик В.В., Цфасман М.А. Алгебраическая геометрия и теория чисел: рациональные и эллиптические. М.: Моск. центр непрерывного мат. образования, 2011. 48 с.
Supplementary files

