Scoring as a method of assessing credit risk: the case of the republic of C?te d’Ivoire

Cover Page

Cite item

Abstract

credit scoring is traditionally used in the banking sector to reduce the likelihood of loan defaults. However, this method has not been applied in public financial management. In the presented study, an adaptation of the credit scoring model is proposed for the public sector of C?te d'Ivoire, which allows for the quantitative assessment of the risks of non-fulfillment of payment obligations. The scientific novelty of the work lies in the transformation of approaches to analyzing the payment capacity of public entities, taking into account the specifics of macroeconomic factors. The issue of a lack of formalized risk assessment tools in public financial management is addressed. The proposed method contributes to more effective budget planning and the reduction of fiscal risks, making it promising for further implementation. Credit scoring has long established itself as an effective risk management tool in the banking sphere. It helps financial institutions forecast the likelihood of non-repayment of loans based on data from previous borrowers. However, despite its successful application in the commercial sector, this method is scarcely used in public financial management, including in C?te d'Ivoire. Today, the problem of public debt sustainability and budget planning is especially relevant for developing countries. The increasing dependence on external and internal borrowing necessitates new tools for assessing the payment capacity of public entities. Implementing a credit scoring model in public financial management could offer more accurate forecasts for debt servicing and help reduce fiscal risks.

About the authors

Guy Kpakpo

People’Friendship University of Russia named after Patrice Lumumba

ORCID iD: 0009-0005-2911-0523

References

  1. Altman E.I. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy // Journal of Finance. 1968, September. P. 30 – 60.
  2. Altman E.I., Haldeman R.G., Narayanan P. Zeta analysis. A new model to identify bankruptcy risk of corporation // Journal of Banking and Finance. 1977. Vol. 1, June. P. 29 – 51.
  3. Bardos M. Analyse discriminante, application au risque et scoring financier. Paris, Dunod, 2001. 210 p.
  4. Bardos M., Zhu W. Comparaison de l’analyse discriminante lin?aire et r?seaux de neurones, applications ? la d?tection de d?faillance des entreprises // Revue de statistique appliqu?e. 1997. XLV4. P. 65 – 92.
  5. Casta J.F., Zerbib J.P. Pr?voir la d?faillance des entreprises // Revue Fran?aise de Comptabilit?. 1979. October, P. 506 – 527.
  6. Collongues Y. Ratios financiers et pr?vision des faillites des petites et moyennes entreprises // Revue Banque. 1977. No. 365, September. P. 963 – 970.
  7. Conan J., Holder M. Variables explicatives de performances et contr?le de gestion dans les PMI. Th?se de Doctorat en sciences de gestion // Universit? de Paris. 1979. № IX. 320 p.
  8. Diallo B. Un mod?le de cr?dit scoring pour une institution de microfinance africaine: le cas de Nyesigiso au Mali. 2006. 180 p.
  9. Diallo Boubacar. Un mod?le de "credit scoring" pour une institution de micro-finance africaine: Le cas de NYESIGISO au Mali. 2006.
  10. Dietsch M., Petey J. Mesure et gestion du risque de cr?dit dans les institutions financi?res. Paris, Revue Banque Edition, 2003. 250 p.
  11. Edighoffer J.R. Cr?dit management : pr?vention et gestion des risques d’impay?s dans l’entreprise. Paris, Nathan, 1993. 190 p.
  12. OECD. Taxing wages 2009-2010. Paris, Organisation de coop?ration et de d?veloppement ?conomiques, 2011. 300 p.
  13. Pinsonneault D., St Cyr L. Mesure et analyse du risque de l’insolvabilit?. Document p?dagogique. Montr?al, Ecole des hautes ?tudes commerciales de Montr?al, 1997. 150 p.
  14. Rakotomalala R. Pratique de la R?gression: Logistique R?gression Logistique Binaire et Polytomique. Lyon, Universit? Lumi?re Lyon 2, 2011. 220 p.
  15. United Nations Conference on Trade and Development. SYGADE 6. UNCTAD.
  16. Verbeek M.A Guide to Modern Econometrics. 2nd Edition. Chichester, John Wiley and Sons, Ltd., 2004. 350 p.
  17. Wallace T.D., Hussain A. The Use of Error Components Models in Combining Cross-section and Time-series Data // Econometrica. 1969. Vol. 37. P. 55 – 72.
  18. Wooldridge J.M. Econometric Analysis of Cross Section and Panel Data. Cambridge, MA, MIT Press, 2002. 400 p.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).