Influence of Cultivation Parameters of Pseudomonas Bacteria on the Production of Antifungal Exometabolites

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The research was carried out in order to identify the optimal parameters for the cultivation of Pseudomonas chlororaphis BZR 245-F and Pseudomonassp. BZR 523-2 bacteria, which form the largest number of bacterial cells and realize a high potential for the synthesis of antifungal metabolites, for their subsequent inclusion in the technological regulations for the production of biofungicides based on these bacteria. The experimental scheme provided for the study of the following cultivation parameters: temperature (+20 °C, +25 °C, +30 °C, + 35 °C) and acidity (3.0; 6.0; 7.0; 8.0 pH units). The titer value of bacterial cells was determined by the Koch method. The analysis of antifungal metabolites was performed by thin-layer chromatography and bioautography. The amount of metabolites produced by bacteria was assessed by visual assessment of thin-layer chromatograms and growth inhibition zones of the test culture of the fungus on bioautograms. For P. chlororaphis BZR 245-F optimal conditions for maximum biomass production (4.72×1011 CFU/ml) and enhanced synthesis of antifungal metabolites, including orange pigment (Rf 0.45) and phenazine compounds (Rf 0.52), are a temperature of 25 °C and pH 6.0–10.0 (with a peak at pH 6.0 and 8.0), and the antifungal activity is most pronounced at 25…30 °C. Strain Pseudomonas sp. BZR 523-2 shows the highest titer (9.7×1011 CFU/ml) and increased production of phenazine metabolites (Rf 0.52) at a temperature of 25–30 °C and pH 6.0…8.0 units, and also produces phenazine in significant amounts at pH 8.0 and 10.0 units. At the same time, its overall antifungal activity, although inferior to P. chlororaphis BZR 245-F, is maximal at a temperature of 30 °C. Both strains synthesize various active compounds, with phenazine structures making the main contribution to their antifungal effect.

About the authors

T. M. Sidorova

Federal Scientific Center for Biological Plant Protection

Email: 0166505@mail.ru
PhD in Biological Sciences 350039, Krasnodar, p/o 39, Russian Federation

M. M. Astakhov

Federal Scientific Center for Biological Plant Protection

Email: 0166505@mail.ru
350039, Krasnodar, p/o 39, Russian Federation

A. M. Asaturova

Federal Scientific Center for Biological Plant Protection

Email: 0166505@mail.ru
PhD in Biological Sciences 350039, Krasnodar, p/o 39, Russian Federation

References

  1. Роль бактерий рода Pseudomonas в устойчивом развитии агроэкосистем и защите окружающей среды (обзор) / Т. Ю. Коршунова, М. Д. Бакаева, Е. В. Кузина и др. // Прикладная биохимия и микробиология. 2021. Т. 57. № 3. С. 211–227. doi: 10.31857/S0555109921030089.
  2. Сидорова Т. М., Аллахвердян В. В., Асатурова А. М. Роль бактерий рода Pseudomonas и их метаболитов в биоконтроле фитопатогенных микроорганизмов // Агрохимия. 2023. № 5. С. 94–104. doi: 10.31857/S0002188123950071.
  3. Павлюшин В. А., Новикова И. И., Бойкова И. В. Микробиологическая защита растений в технологиях фитосанитарной оптимизации агроэкосистем: теория и практика (обзор) // Сельскохозяйственная биология. 2020. Т. 55. № 3. С. 421–438. doi: 10.15389/agrobiology.2020.3.421rus.
  4. Plant-associated Bacillus and Pseudomonas antimicrobial activities in plant disease suppression via biological control mechanisms: a review / I. Dimkic, T. Janakiev, M. Petrovic, et al. // Physiological and molecular plant pathology. 2022. Vol. 117. Article 101754. URL: https://www.sciencedirect.com/journal/physiological-and-molecularplant-pathology (дата обращения: 27.01.2025). doi: 10.1016/j.pmpp.2021.101754.
  5. Recent advances in phenazine natural products: biosynthesis and metabolic engineering / W. Huang, Y. Wan, H. Su et al. // Journal of agricultural and food chemistry. 2024. Vol. 72. No. 39. P. 21364–21379. doi: 10.1021/acs.jafc.4c05294.
  6. Enhanced Phenazine-1-Carboxamide Production in Pseudomonas chlororaphis H5 fleQ relA through Fermentation Optimization / J. Cui, W. Wang, H. Hu, et al. // Fermentation. 2022. Vol. 8. No. 4. Article 188. URL: https://www.mdpi.com/2311–5637/8/4/188 (дата обращения: 07.02.2025). doi: 10.3390/fermentation8040188.
  7. Identification of strong quorum sensing and thermoregulated promoter for the biosynthesis of a new metabolite pesticide phenazine-1-carboxamide in Pseudomonas strain PA1201 / Z.-J. Jin, L. Zhou, S. Sun, et al. // ACS Synthetic biology. 2020. Vol. 9. No. 7. P. 1802–1812. doi: 10.1021/acssynbio.0c00161.
  8. Metabolic reconstruction of Pseudomonas chlororaphis ATCC 9446 to understand its metabolic potential as a phenazine-1-carboxamide producing strain / F. Moreno-Avitia, J. Utrilla, F. Bolivar, et al. // Appl Microbiol Biotechnol. 2020. Vol. 104. P. 10119–10132. doi: 10.1007/s00253-020-10913-4.
  9. Biological ability of phenazine-producing strains for the management of fungal plant pathogens: a review / S.-Y. Wang, X.-C. Shi, X. Chen, et al. // Biological control. 2021. Vol. 155. Article 104528. URL: https://www.sciencedirect.com/journal/biologicalcontrol (дата обращения: 10.02.2025). doi: 10.1016/j.biocontrol.2021.104528.
  10. Pseudomonas cyclic lipopeptides suppress the rice blast fungus Magnaporthe oryzae by induced resistance and direct antagonism / O. O. Omoboye, F. E. Oni, H. Batool, et al. // Front. plant sci. 2019. Vol. 10. URL: https://www.frontiersin.org/journals/plantscience/articles/10.3389/fpls.2019.00901/full (дата обращения: 10.04.2025). doi: 10.3389/fpls2019.00901.
  11. Isolation and identification of bioactive substance 1-hydroxyphenazine from Pseudomonas aeruginosa and its antimicrobial activity / T. T. Liu, F. C. Ye, C. P. Pang, et al. // Letters in Applied Microbiology. 2020. Vol. 71. No. 3. P. 303–310. doi: org/10.1111/lam.13332.
  12. Characterization and engineering of Pseudomonas chlororaphis LX 24 with high production of 2-hydroxyphenazine / W.-H. Liu, S.-J. Yue, T.-T. Feng, et al. // Journal of agricultural and food chemistry. 2021. Vol. 69. No. 16. P. 4778–4784. doi: 10.1021/acs.jafc.1c00434.
  13. Isolation and characterization of antifungal metabolites of Bacillus subtilis BZR 336g and Bacillus subtilis BZR 517 strains by a modified bioautography method / T. M. Sidorova, A. M. Asaturova, A. I. Khomyak, et al. // Agricultural Biology. 2019. Vol. 54. P. 178–185. doi: 10.15389/agrobiology.2019.1.178rus.
  14. New Pseudomonas bacterial strains: biological activity and characteristic properties of metabolites / T. M. Sidorova, N. S. Tomashevich, V. V. Allakhverdjan, et al. // Microorganisms. 2023. Vol. 11. No. 8. P. 1493. doi: 10.3390/microorganisms11081943.
  15. Identification of Pseudomonas mosselii BS011 gene clusters required for suppression of rice blast fungus Magnaporthe oryzae / L. Wu, G. Chen, D. Song, et al. // Journal of biotechnology. 2018. Vol. 282. P. 1–9. URL: https://colab.ws/articles/10.1016%2Fj.jbiotec.2018.04.016 (дата обращения: 10.04.2025). doi: 10.1016/j.jbiotec.2018.04.016.
  16. Практикум по микробиологии / А. И. Нетрусов, М. А. Егорова, Л. М. Захарчук и др. М.: Академия, 2005. 608 с.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).