Polyphenol Complex of Plum Varieties Most Adapted to the Conditions of the South of the Russian Far East: Identification by Tandem Mass Spectrometry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The aim of the study was to isolate and identify a complex of bioactive compounds, including polyphenols and compounds of other chemical classes, from plum fruit pulp extracts to assess their potential as a source of biologically active substances of phenolic nature. Ripe fruits of the plum varieties Krasnomyasaya, Neporazhemaya, Long Yuan Mi Li, Long Yuan Tao Li, collected at the end of July 2023 at the collection variety plot of the Far Eastern Experimental Station (Primorsky Krai), were used as plant material. To obtain highly concentrated extracts, fractional maceration was used: seven-day infusion of each part of the pulp in a dark room at room temperature with three repeated extractions for each sample. Mass spectrometric analysis was performed on an ion trap with an electrospray source (positive and negative ions), separating multicomponent mixtures on a Shimadzu LC-20 Prominence HPLC liquid chromatograph with a UV detector and a Shodex ODP-40 4E reversed-phase column. A gradient mode of transition from water to acetonitrile was used: 0…4 min. (0 % acetonitrile), 4…60 min. (25 % acetonitrile), 60…75 min. (100 % acetonitrile), 75…120 min. (100 % acetonitrile). Mass spectra were recorded in the m/zrange of 100…1700 with fragmentation upto the 4th order. A total of 74 chemical compounds were identified as a result of mass spectrometric experiments, 52 of which were classified as polyphenols. A large group of anthocyanins and catechins has been identified, indicating high antioxidant properties of the studied plant matrices. For the first time, polyphenolic compounds ibuprofen, phloretin, umbelliferone, methylgallic acid, dihydrokaempferol, herbacetin, umbelliferone hexoside, p-coumaroylquinic acid – have been isolated from the pulp of Prunus L. fruits. The results indicate high prospects for the fruits of the studied plum varieties as an object of research for the search for biologically active substances of a polyphenolic nature, potentially suitable for the creation of new drugs and biologically active additives.

About the authors

M. P. Razgonova

Federal Research Center the Vavilov All-Russian Institute of Plant Genetic Resources (VIR); Far Eastern Federal University, Advanced Engineering School «Institute of Biotechnology, Bioengineering and Food Systems»

Email: m.razgonova@vir.nw.ru
Candidate of Technical Sciences 190000, Sankt-Peterburg, ul. Bol’shaya Morskaya, 42–44; 690922, Vladivostok, ostrov Russkii, Ayaks, 10

V. S. Kirin

Federal Research Center the Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: m.razgonova@vir.nw.ru
190000, Sankt-Peterburg, ul. Bol’shaya Morskaya, 42–44

A. Sh. Sabitov

Federal Research Center the Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: m.razgonova@vir.nw.ru
Candidate of Agricultural Sciences 190000, Sankt-Peterburg, ul. Bol’shaya Morskaya, 42–44

N. G. Tikhonova

Federal Research Center the Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: m.razgonova@vir.nw.ru
Candidate of Biological Sciences 190000, Sankt-Peterburg, ul. Bol’shaya Morskaya, 42–44

K. S. Golokhvast

Siberian Federal Research Center of Agricultural Biotechnology, Russian Academy of Sciences; Tomsk State University, Higher Engineering School of Agrobiotechnology

Email: golokhvast@sfsca.ru
Doctor of Biological Sciences 630501, Novosibirskaya obl., Novosibirskii r-n, pos. Krasnoobsk; ul. Karla Marksa, 19, Tomsk, 634050, Russian Federation

References

  1. An Overview of the Phytochemical Composition of Different Organs of Prunus Spinosa L., Their Health Benefits and Application in Food Industry / M. F. Bei, A. I. Apahidean, R. Budau, et al. // Horticulturae. 2024. No. 10. Article 29. URL: https://www.mdpi.com/2311-7524/10/1/29 (дата обращения: 01.02.2025). doi: 10.3390/horticulturae10010029.
  2. Витковский В. Л. Плодовые Растения Мира. Санкт-Петербург: Издательство «Лань», 2003. 591 c.
  3. Казьмин Г. Т. Селекция зимостойких сортов косточковых культур на Дальнем Востоке // Доклады советских ученых к XIX Международному конгрессу по садоводству (Варшава, ПНР). Москва, 1974. С. 97–100.
  4. Царенко В. П., Царенко Н. А. Слива на Дальнем Востоке России. Владивосток: Морской государственный университет, 2014. 187 с.
  5. Soluble Sugar, Organic Acid and Phenolic Composition and Flavor Evaluation of Plum Fruits / Q. Xiao, S. Ye, H. Wang, et al. // Food Chem. 2024. No. 24. Article 101790. URL: https://www.sciencedirect.com/science/article/pii/S2590157524006783 (дата обращения: 01.02.2025). doi: 10.1016/j.fochx.2024.101790.
  6. Miletic N. Phenolic Content and Antioxidant Capacity of Fruits of Plum Cv. 'Stanley' (Prunus Domestica L.) as Influenced by Maturity Stage and on-Tree Ripening // Aust J Crop Sci. 2012. No. 6. C. 681–687.
  7. Оценка сортов и гибридных форм сливы как источника биологически активных веществ / М. А. Макаркина, О. А. Ветрова, А. А. Гуляева и др. // Вестник Курской государственной сельскохозяйственной академии. 2019. № 5. C. 69–74.
  8. Study of the antioxidant complex of plum fruits Prunus ussuriensis and Prunus insititia in the Sverdlovsk region / A. V. Arisov, A. V. Vyatkin, M. G. Isakova, et al. // Chemistry of plant raw material. 2023. No. 4. P. 353–360.
  9. Акимов М. Ю. Биологическая Ценность Плодов и Ягод Российского Производства // Вопросы питания. 2020. № 89. C. 220–232. doi: 10.24411/0042-8833-2020-10055.
  10. Сафонова И. А., Яцюк В. Я. Изучение фенольных соединений листьев сливы колючей (Prunus spinosa L.) методом высокоэффективной жидкостной хроматографии. // Научные ведомости. Серия Медицина. Фармация. 2011. № 4 (99). Вып. 13. С. 165–169.
  11. Identification of Chemopreventive Components from Halophytes Belonging to Aizoaceae and Cactaceae Through LC/MS–Bioassay Guided Approach / A. R. Hamed, S. S. El-Hawary, R. M. Ibrahim, et al. // J. Chromatogr. Sci. 2021. No. 59. P. 618–626. doi: 10.1093/chromsci/bmaa112.
  12. Colonic Fermentation of Polyphenols from Chilean Currants (Ribes Spp.) and Its Effect on Antioxidant Capacity and Metabolic Syndrome-Associated Enzymes / A. Burgos-Edwards, F. Jiménez-Aspee, C. Theoduloz, et al. // Food Chem. 2018. No. 258. P. 144–155. doi: 10.1016/j.foodchem.2018.03.053.
  13. Anthocyanin Profiles in South Patagonian Wild Berries by HPLC-DAD-ESI-MS/MS / A. Ruiz, I. Hermosín-Gutiérrez, C. Vergara, et al. // Food Research International. 2013. No. 51. P. 706–713. doi: 10.1016/j.foodres.2013.01.043.
  14. Genus Ribes: Ribes Aureum, Ribes Pauciflorum, Ribes Triste, and Ribes Dikuscha – Comparative Mass Spectrometric Study of Polyphenolic Composition and Other Bioactive Constituents / M. P. Razgonova, M. A. Nawaz, A. S. Sabitov, et al. // Int. J. Mol. Sci. 2024. No. 25. Article 10085. URL: https://www.mdpi.com/1422-0067/25/18/10085 (дата обращения: 01.02.2025). doi: 10.3390/ijms251810085.
  15. Полифенольные Соединения Голубики (Vaccinium Uliginosum L.) Из Магаданской Экспедиции, Идентифицированные Методом Тандемной Масс-Спектрометрии / M. П. Разгонова, А. Ш. Сабитов, О. В. Кульчина и др. // Сибирский вестник сельскохозяйственной науки. 2024. № 54. C. 23–38. doi: 10.26898/0370-8799-2024-11-3.
  16. Rapid Qualitative Profiling and Quantitative Analysis of Phenolics in Ribes Meyeri Leaves and Their Antioxidant and Antidiabetic Activities by HPLC‐QTOF‐MS/MS and UHPLC‐MS/MS / Y. Zhao, H. Lu, Q. Wang, et al. // J. Sep. Sci. 2021. No. 44. P. 1404–1420. doi: 10.1002/jssc.202000962.
  17. Comparison of Multiple Bioactive Constituents in the Flower and the Caulis of Lonicera Japonica Based on UFLC-QTRAP-MS/MS Combined with Multivariate Statistical Analysis / Z. Cai, C. Wang, L. Zou, et al. // Molecules. 2019. No. 24. Article 1936. URL: https://www.mdpi.com/1420-3049/24/10/1936 (дата обращения: 01.02.2025). doi: 10.3390/molecules24101936.
  18. Identification of Key Metabolites Based on Non-Targeted Metabolomics and Chemometrics Analyses Provides Insights into Bitterness in Kucha [Camellia Kucha (Chang et Wang) Chang]. / D. Qin, Q. Wang, H. Li, et al. // Food Research International. 2020. No. 138. Article 109789. URL: https://www.sciencedirect.com/science/article/pii/S0963996920308140?via%3Dihub (дата обращения: 01.02.2025). doi: 10.1016/j.foodres.2020.109789.
  19. Identification and Characterization of Major Constituents in Juglans Mandshurica Using Ultra Performance Liquid Chromatography Coupled with Time-of-Flight Mass Spectrometry (UPLC-ESI-Q-TOF/MS) / J.-H. Huo, X.-W. Du, G.-D. Sun, et al. // Chin. J. Nat. Med. 2018. No. 16. P. 525–545. doi: 10.1016/j.foodres.2020.109789.
  20. Andean Blueberry of the Genus Disterigma: A High-Resolution Mass Spectrometric Approach for the Comprehensive Characterization of Phenolic Compounds / S. Aita, A. Capriotti, C. Cavaliere, et al. // Separations. 2021. No. 8. Article 58. URL: https://www.mdpi.com/2297-8739/8/5/58 (дата обращения: 01.02.2025). doi: 10.3390/separations8050058.
  21. Global Metabolome Profiles of Lonicera Caerulea L. and Lonicera Caerulea Ssp. Kamtschatica (Sevast.) Gladkova / M. A. Nawaz, M. P. Razgonova, E. A. Rusakova, et al. // Turkish Journal of Agriculture and Forestry. 2024. No. 48. P. 745–759. doi: 10.55730/1300-011X.3216.
  22. The Global Metabolome Profiles of Four Varieties of Caerulea, Established via Tandem Mass Spectrometry / M. P. Razgonova, M. A. Nawaz, A. S. Sabitov, et al. // Horticulturae. 2023. No. 9. Article 1188. URL: https://www.mdpi.com/2311-7524/9/11/1188 (дата обращения: 01.02.2025). doi: 10.3390/horticulturae9111188.
  23. Zostera Marina L.: Supercritical CO2-Extraction and Mass Spectrometric Characterization of Chemical Constituents Recovered from Seagrass / M. P. Razgonova, L. A. Tekutyeva, A. B. Podvolotskaya, et al. // Separations. 2022. No. 9. Article 182. URL: https://www.mdpi.com/2297-8739/9/7/182 (дата обращения: 01.02.2025). doi: 10.3390/separations9070182.
  24. HPLC-DAD-ESI-MS/MS Screening of Bioactive Components from Rhus Coriaria L. (Sumac) Fruits / I. M. Abu-Reidah, M. S. Ali-Shtayeh, R. M. Jamous, et al. // Food Chem. 2015. No. 166. P. 179–191. doi: 10.1016/j.foodchem.2014.06.011.
  25. Differences in the Metabolic Profiles and Antioxidant Activities of Wild and Cultivated Black Soybeans Evaluated by Correlation Analysis / J. L. Xu, J.-S. Shin, S.-K. Park, et al. // Food Research International. 2017. No. 100. P. 166–174. doi: 10.1016/j.foodres.2017.08.026.
  26. Metabolomic Analysis Reveals Domestication-Driven Reshaping of Polyphenolic Antioxidants in Soybean Seeds / X. Li, S. Li, J. Wang, et al. // Antioxidants. 2023. No. 12. Article 912. URL: https://www.mdpi.com/2076-3921/12/4/912 (дата обращения: 01.02.2025). doi: 10.3390/antiox12040912.
  27. Tentative Characterization of Polyphenolic Compounds in the Male Flowers of Phoenix Dactylifera by Liquid Chromatography Coupled with Mass Spectrometry and DFT / R. B. Said, A. I. Hamed, U. A. Mahalel, et al. // Int. J. Mol. Sci. 2017. No. 18. Article 512. URL: https://www.mdpi.com/1422-0067/18/3/512 (дата обращения: 01.02.2025). doi: 10.3390/ijms18030512.
  28. Isolation and Quantification of Diarylheptanoids from European Hornbeam (Carpinus Betulus L.) and HPLC-ESI–MS/MS Characterization of Its Antioxidative Phenolics / C. A. Felegyi-Tóth, Z. Garádi, A. Darcsi, et al. // J. Pharm. Biomed. Anal. 2022. No. 210. Article 114554. URL: https://www.sciencedirect.com/science/article/pii/S0731708521006658 (дата обращения: 01.02.2025). doi: 10.1016/j.jpba.2021.114554.
  29. Spinola V., Pinto J., Castilho P. C. Identification and Quantification of Phenolic Compounds of Selected Fruits from Madeira Island by HPLC-DAD-ESI-MSn and Screening for Their Antioxidant Activity // Food Chem. 2015. No. 173. P. 14–30. doi: 10.1016/j.jpba.2021.114554.
  30. Rare Plant of Central Yakutia Polygala Sibirica L.: Phytochemical Profile and In Vitro Morphogenic Culture / Zh. M. Okhlopkova, M. P. Razgonova, E. V. Kucharova, et al. // Russian Journal of Plant Physiology. 2023. No. 70. Article 176. URL: https://link.springer.com/article/10.1134/S1021443723603099 (дата обращения: 01.02.2025). doi: 10.1134/S1021443723603099.
  31. Antioxidant, Antimicrobial Activities and Characterization of Polyphenol-Enriched Extract of Egyptian Celery (Apium Graveolens L., Apiaceae) Aerial Parts via UPLC/ESI/TOF-MS / A. M. Emad, D. M. Rasheed, R. F. El-Kased, et al. // Molecules. 2022. No. 27. Article 698. URL: https://www.mdpi.com/1420-3049/27/3/698 (дата обращения: 01.02.2025). doi: 10.3390/molecules27030698.
  32. Characterization of Carotenoid Profiles in Goldenberry (Physalis Peruviana L.) Fruits at Various Ripening Stages and in Different Plant Tissues by HPLC-DAD-APCI-MS / L. Etzbach, A. Pfeiffer, F. Weber, et al. // Food Chem. 2018. No. 245. P. 508–517. doi: 10.1016/j.foodchem.2017.10.120.
  33. Physiological and Metabolomics Analyses of Young and Old Leaves from Wild and Cultivated Soybean Seedlings under Low-Nitrogen Conditions / Y. Liu, M. Li, J. Xu, et al. // BMC Plant Biol. 2019. No. 19. Article 389. URL: https://link.springer.com/article/10.1186/s12870-019-2005-6 (дата обращения: 01.02.2025). doi: 10.1186/s12870-019-2005-6.
  34. Rosa Davurica Pall., Rosa Rugosa Thumb., and Rosa Acicularis Lindl. Originating from Far Eastern Russia: Screening of 146 Chemical Constituents in Three Species of the Genus Rosa / M. P. Razgonova, B. A. Bazhenova, Y. Yu. Zabalueva, et al. // Applied Sciences. 2022. No. 12. Article 9401. URL: https://www.mdpi.com/2076-3417/12/19/9401 (дата обращения: 21.02.2025). doi: 10.3390/app12199401.
  35. Polyphenol and Glycoalkaloid Contents in Potato Cultivars Grown in Luxembourg / H. Deußer, C. Guignard, L. Hoffmann, et al. // Food Chem. 2012. No. 135. P. 2814–2824. doi: 10.1016/j.foodchem.2012.07.028.
  36. Shakya R., Navarre D. A. LC–MS Analysis of Solanidane Glycoalkaloid Diversity among Tubers of Four Wild Potato Species and Three Cultivars (Solanum Tuberosum) // J. Agric. Food Chem. 2008. No. 56. P. 6949–6958. doi: 10.1021/jf8006618.
  37. Hossain M., Brunton N., Rai D. Effect of Drying Methods on the Steroidal Alkaloid Content of Potato Peels, Shoots and Berries // Molecules. 2016. No. 21. Article 403. URL: https://www.mdpi.com/1420-3049/21/4/403 (дата обращения: 21.02.2025). doi: 10.3390/molecules21040403.
  38. A Comprehensive Review of Herbacetin: From Chemistry to Pharmacological Activities / X. Wei, Z. Zhao, R. Zhong, et al. // J. Ethnopharmacol. 2021. No. 279. Article 114356. URL: https://www.sciencedirect.com/science/article/pii/S0378874121005857 (дата обращения: 21.02.2025). doi: 10.1016/j.jep.2021.114356.
  39. Discovery of Herbacetin as a Novel SGK1 Inhibitor to Alleviate Myocardial Hypertrophy / S. Zhang, Y. Wang, M. Yu, et al. // Advanced Science. 2022. Article 9. URL: https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/advs.202101485 (дата обращения: 21.02.2025). doi: 10.1002/advs.202101485.
  40. Characterization of Metabolite Profiles of Leaves of Bilberry (Vaccinium Myrtillus L.) and Lingonberry (Vaccinium Vitis-Idaea L.) / P. Liu, A. Lindstedt, N. Markkinen, et al. // J. Agric. Food Chem. 2014. No. 62. P. 12015–12026. doi: 10.1021/jf503521m.
  41. Bernatoniene J., Kopustinskiene D. M. The Role of Catechins in Cellular Responses to Oxidative Stress // Molecules. 2018. No. 23. Article 965. URL: https://www.mdpi.com/1420-3049/23/4/965 (дата обращения: 21.02.2025). doi: 10.3390/molecules23040965.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).