Genotyping of Strawberry Varieties (Fragaria L.) by Pathogen Resistance Loci

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study was conducted with the purpose of molecular marking of strawberry varieties for resistance alleles to powdery mildew, anthracnose and red stele root rot. The biological objects of the study were 54 strawberry varieties (F. х ananassa) from the genetic collection of the I. V. Michurin Federal Scientific Center. Genomic DNA extraction was performed according to a modified CTAB protocol. Strawberry pathogen resistance alleles were identified using classical PCR (08 To-f – powdery mildew resistance, Rca2 – anthracnose resistance, Rpf1 – red stele root rot resistance) and high-resolution melting curve analysis (anthracnose resistance loci FaRCa1 and FaRCg1). The 08 To-fpowdery mildew resistance locus was identified in 11.1 % of the analyzed strawberry varieties. The FaRCa1, Rca2 and FaRCg1 anthracnose resistance loci were present in 40.7 %, 12.9 % and 35.2 % of the analyzed samples, respectively. The Rpf1 red stele root rot resistance gene was identified in 1.8 % of the analyzed strawberry varieties. At least one of the 5 studied resistance loci is present in 74.1 % genotypes (among Russian varieties – in 78.6 % samples, among foreign varieties – in 69.2 % samples). Combinations of 5 and 4 resistance alleles in one genotype were not identified. The combination of three resistance alleles was identified in the Borovitskaya (FaRCa1, Rca2 and FaRCg1) and Sudarushka (Rca2, FaRCg1 and 08 To-f) varieties. The combination of two resistance alleles was detected in 22.2 % of strawberry varieties: Zenit, Neznakomka, Urozhaynaya CGL, Flora, Salsa and Vicoda (FaRCa1+FaRCg1), Aprica (FaRCa1+Rca2), Ostara (FaRCa1+08 To-f), Bylinnaya (08 To-f+Rpf1), Florence and Malwina (08 To-f+Rca2). The indicated varieties are promising complex genetic sources of pathogen resistance alleles and are recommended for inclusion in the breeding to improve the strawberry assortment.

About the authors

A. S. Lyzhin

Michurin Federal Scientific Center

Email: ranenburzhetc@yandex.ru
Candidate of Agricultural Sciences 393774, Tambovskaya obl., Michurinsk, ul. Michurina, 30

I. V. Lukyanchuk

Michurin Federal Scientific Center

Email: ranenburzhetc@yandex.ru
Candidate of Agricultural Sciences 393774, Tambovskaya obl., Michurinsk, ul. Michurina, 30

References

  1. Hancock J. F., Callow P. W., Serce S. Variation in the horticultural characteristics of native Fragaria virginiana and F. chiloensis from North and South America // J. Amer. Soc. Hort. Sci. 2003. Vol. 128 (2). P. 201–208.
  2. Origin and evolution of the octoploid strawberry genome / P. P. Edger, T. J. Poorten, R. VanBuren, et al. // Nat. Genet. 2019. Vol. 51. P. 541–547. doi: 10.1038/s41588-019-0356-4.
  3. Development of cleaved amplified polymorphic sequence (CAPS) marker for selecting powdery mildew-resistance line in strawberry (Fragaria × ananassa Duchesne) / H. J. Je, J. W. Ahn, H. S. Yoon, et al. // Horticultural Science and Technology. 2015. Vol. 33 (5). P. 722–729.
  4. High-throughput marker assays for FaRPc2-mediated resistance to Phytophthora crown rot in octoploid strawberry / Y. H. Noh, Y. Oh, J. Mangandi, et al. // Mol. Breeding. 2018. Vol. 38 (8). P. 1–11. URL: https://link.springer.com/article/10.1007/s11032-018-0861-7 (дата обращения: 06.02.2025). doi: 10.1007/s11032-018-0861-7.
  5. Oh Y., Chandra S., Lee S. Development of subgenome-specific markers for FaRXf1 conferring resistance to bacterial angular leaf spot in allo-octoploid strawberry // International Journal of Fruit Science. 2020. Vol. 20 (sup2). P. S198–S210. URL: https://www.tandfonline.com/doi/full/10.1080/15538362.2019.1709116 (дата обращения: 06.02.2025). doi: 10.1080/15538362.2019.1709116.
  6. Updates on strawberry DNA testing and marker-assisted breeding at the University of Florida / Y. J. Jang, Y. Oh, S. Verma, et al. // International Journal of Fruit Science. 2024. Vol. 24 (1). P. 219–228. doi: 10.1080/15538362.2024.2365683.
  7. Allelic variation of MYB10 is the major force controlling natural variation in skin and flesh color in strawberry (Fragaria spp.) fruit / C. Castillejo, V. Waurich, H. Wagner, et al. // The Plant Cell. 2020. Vol. 32 (12). P. 3723–3749. doi: 10.1105/tpc.20.00474.
  8. DNA Marker Linked to Everbearing Flowering Gene in Cultivated Strawberry, with High Applicability to Various Breeding Populations / M. Honjo, H. Koishihara, H. Tsukazaki, et al. // The Horticulture Journal. 2020. Vol. 89 (2). P. 161–166. doi: 10.2503/hortj.UTD-034.
  9. Luk’yanchuk I. V., Lyzhin A. S., Kozlova I. I. Analysis of strawberry genetic collection (Fragaria L.) for Rca2 and Rpf1 genes with molecular markers // Vavilov Journal of Genetics and Breeding. 2018. Vol. 22 (7). P. 795–799. doi: 10.18699/VJ18.423.
  10. Lyzhin A. S., Luk’yanchuk I. V. Study of a genetic collection of strawberry (Fragaria L.) for resistance to powdery mildew // Vavilov Journal of Genetics and Breeding. 2024. Vol. 28 (2). P. 166–174. doi: 10.18699/vjgb-24-19.
  11. Лыжин А. С., Лукъянчук И. В. Анализ полиморфизма локуса FaRca1 для выявления устойчивых к Colletotrichum acutatum генотипов земляники // Труды по прикладной ботанике, генетике и селекции. 2024. Т. 185. № 4. С. 150–158. doi: 10.30901/2227-8834-2024-4-150-158.
  12. Marker associated with powdery mildew resistance in plant of genus Fragaria and use thereof / H. Koishihara, H. Enoki, M. Muramatsu, et al. // Patent US10724093B2. 2020. 28 p. URL: https://patentimages.storage.googleapis.com/61/95/a4/5900dc39b91ee3/US10724093.pdf (дата обращения: 06.02.2025).
  13. FaRCa1 confers moderate resistance to the root necrosis form of strawberry anthracnose caused by Colletotrichum acutatum / N. Salinas, Z. Fan, N. Peres, et al. // HortScience. 2020. Vol. 55 (5). P. 693–698. doi: 10.21273/HORTSCI14807-20.
  14. Lerceteau-Kohler E., Guerin G., Denoyes-Rothan B. Identification of SCAR markers linked to Rca2 anthracnose resistance gene and their assessment in strawberry germplasm // Theor. Appl. Genet. 2005. Vol. 111. P. 862–870. doi: 10.1007/s00122-005-0008-1.
  15. Comparative transcriptome analysis to identify candidate genes for FaRCg1 conferring resistance against Colletotrichum gloeosporioides in cultivated strawberry (Fragaria × ananassa) / S. Chandra, Y. Oh, H. Han, et al. // Front. Genet. 2021. Vol. 12. P. 730444. URL: https://www.frontiersin.org/journals/genetics/articles/10.3389/fgene.2021.730444/full (дата обращения: 06.02.2025). doi: 10.3389/fgene.2021.730444.
  16. Development of SCAR markers linked to a Phytophthora fragariae resistance gene and their assessment in European and North American strawberry genotypes / K. M. Haymes, W. E. Van de Weg, P. Arens, et al. // JASHS. 2000. Vol. 125 (3). P. 330–339.
  17. Identification of powdery mildew resistance QTL in strawberry (Fragaria × ananassa) / H. M. Cockerton, R. J. Vickerstaff, A. Karlström, et al. // Theoretical and applied genetics. 2018. Vol. 131. P. 1995–2007. doi: 10.1007/s00122-018-3128-0.
  18. Identification of QTLs for powdery mildew (Podosphaera aphanis; syn. Sphaerotheca macularis f. sp. fragariae) susceptibility in cultivated strawberry (Fragaria × ananassa) / D. J. Sargent, M. Buti, N. Surbanovski, et al. // PLOS ONE. 2019. Vol. 14 (9). P. e0222829. URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0222829 (дата обращения: 06.02.2025). doi: 10.1371/journal.pone.0222829.
  19. Худякова А. В., Маркова М. Г. Скрининг коллекции земляники садовой на наличие локусов резистентности Rca2 и 08 To-f // Аграрная наука Евро-Северо-Востока. 2025. Т. 26. № 3. С. 546–554. doi: 10.30766/2072-9081.2025.26.3.546-554.
  20. Кузнецова А. А., Копина М. Б., Головин С. Е. Внутривидовое различие комплекса Colletotrichum acutatum Simmonds на плодовых и ягодных культурах // Плодоводство и ягодоводство России. 2019. Т. 56. С. 142–147. doi: 10.31676/2073-4948-2019-56-142-147.
  21. Colletotrichum species pathogenic to strawberry: discovery history, global diversity, prevalence in China, and the host range of top two species / Y. Ji, X. Li, Q. H. Gao, et al. // Phytopathol. Res. 2022. Vol. 4. P. 42. URL: https://link.springer.com/article/10.1186/s42483-22-00147-9 (дата обращения: 06.02.2025). doi: 10.1186/s42483-022-00147-9.
  22. Lyzhin A., Luk’yanchuk I. Marker-assisted screening of promising forms in the strawberry breeding // E3S Web of Conferences. 2021. Vol. 254. P. 03002. URL: https://www.e3s-conferences.org/articles/e3sconf/pdf/2021/30/e3sconf_farba2021_03002.pdf (дата обращения: 06.02.2025). doi: 10.1051/e3sconf/202125403002.
  23. Use of RAPD and SCAR markers for identification of strawberry genotypes with red stele resistance genes Rpf1 and fruit rot resistance genes Rca2 in the hybrid progenies / M. Sturzeanu, M. Ciuca, D. Cristina, et al. // Acta Hortic. 2021. Vol. 1309. P. 93–100. doi: 10.17660/ActaHortic.2021.1309.15.
  24. Zurn J. D., Hummer K. E., Bassil N. V. Exploring the diversity and genetic structure of the US National Cultivated Strawberry Collection // Horticulture Research. 2022. Vol. 9. P. uhac125. URL: https://academic.oup.com/hr/article/doi/10.1093/hr/uhac125/6593717 (дата обращения: 06.02.2025). doi: 10.1093/hr/uhac125.
  25. DNA-screening of strawberry cultivars and hybrids (Fragaria ananassa Duch.) for resistance to fungal diseases / M. Keldibekova, E. Bezlepkina, M. Zubkova, et al. // Pakistan Journal of Botany. 2024. Vol. 56 (2). P. 29. URL: http://pakbs.org/pjbot/papers/1709118867.pdf (дата обращения: 06.02.2025). doi: 10.30848/PJB2024-2(29).
  26. Лыжин А. С., Лукъянчук И. В. Молекулярный скрининг аллеля устойчивости к антракнозу Rca2 у сортов и селекционных форм земляники // Весці Нацыянальнай акадэміі навук Беларусi. Серија аграрных навук. 2025. Т. 63. № 1. С. 35–44. doi: 10.29235/1817-7204-2025-63-1-35-44.
  27. Келдибекова М. А., Зубкова М. И. Анализ сортов земляники садовой (Fragaria ananassa Duch.) по генам Rca2 и Rpf1 с применением ДНК-маркеров // Таврический вестник аграрной науки. 2023. № 3 (35). С. 103–109. doi: 10.5281/zenodo.10135427.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).