An Intelligent Corn Disease Detection System for Integration into Mechanized Crop Protection Systems
- Authors: Mudarisov S.G.1, Miftakhov I.R.1, Farkhutdinov I.M.1
-
Affiliations:
- Bashkir State Agrarian University
- Issue: No 6 (2025)
- Pages: 46-53
- Section: Mechanization, electrification, automation and digitalization
- URL: https://ogarev-online.ru/2500-2627/article/view/371775
- DOI: https://doi.org/10.7868/S3034582025060083
- ID: 371775
Cite item
Abstract
About the authors
S. G. Mudarisov
Bashkir State Agrarian University
Email: bgau@ufanet.ru
Doctor of Technical Sciences 450001, Ufa, ul. 50-letiya Oktyabrya, 34
I. R. Miftakhov
Bashkir State Agrarian University
Email: bgau@ufanet.ru
Candidate of Technical Sciences 450001, Ufa, ul. 50-letiya Oktyabrya, 34
I. M. Farkhutdinov
Bashkir State Agrarian University
Email: bgau@ufanet.ru
Doctor of Technical Sciences 450001, Ufa, ul. 50-letiya Oktyabrya, 34
References
- A Review on UAV-Based Applications for Plant Disease Detection and Monitoring / L. Kouadio, M. El Jarroudi, Z. Belabess, et al. // Remote Sensing. 2023. Vol. 15. Article 4273. URL: https://www.mdpi.com/2072-4292/15/17/4273 (дата обращения: 20.09.2025). doi: 10.3390/rs15174273.
- DFCANet: A Novel Lightweight Convolutional Neural Network Model for Corn Disease Identification / Ya. Chen, X. Chen, J. Lin, et al. // Agriculture. 2022. Vol. 12. No. 12. P. 2047. doi: 10.3390/agriculture12122047.
- Assessment of Map-Based Variable Rate Strategies for Copper Reduction in Hedge Vineyards / F. Garcia-Ruiz, Ja. Campos, J. Llop-Casamada, et al. // Computers and Electronics in Agriculture. 2023. Vol. 207. Article 107753. URL: https://www.sciencedirect.com/science/article/pii/S0168169923001412 (дата обращения: 20.09.2025). doi: 10.1016/j.compag.2023.107753.
- ICS-ResNet: A Lightweight Network for Maize Leaf Disease Classification / Zh. Ji, Sh. Bao, M. Chen, et al. // Agronomy. 2024. Vol. 14. Article 1587. URL: https://www.mdpi.com/2073-4395/14/7/1587 (дата обращения: 20.09.2025). doi: 10.3390/agronomy14071587.
- Kamilaris A., Prenafeta-Boldú F. X. Deep learning in agriculture: A survey // Computers and Electronics in Agriculture. 2018. Vol. 147. P. 70–90. doi: 10.1016/j.compag.2018.02.016.
- Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification / S. Sladojevic, M. Arsenovic, A. Anderla, et al. // Computational Intelligence and Neuroscience. 2016. Vol. 2016. Article 3289801. URL: https://www.hindawi.com/journals/cin/2016/3289801 (дата обращения: 20.09.2025). doi: 10.1155/2016/3289801.
- Quantitative Phenotyping of Northern Leaf Blight in UAV Images Using Deep Learning / E. L. Stewart, T. Wiesner-Hanks, N. Kaczmar, et al. // Remote Sensing. 2019. Vol. 11. Article 2209. URL: https://www.mdpi.com/2072-4292/11/19/2209 (дата обращения: 20.09.2025). doi: 10.3390/rs11192209.
- Millimeter-Level Plant Disease Detection from Aerial Photographs via Deep Learning and Crowdsourced Data / T. Wiesner-Hanks, H. Wu, E. L. Stewart, et al. // Frontiers in Plant Science. 2019. Vol. 10. Article 1550. URL: https://www.frontiersin.org/articles/10.3389/fpls.2019.01550/full (дата обращения: 20.09.2025). doi: 10.3389/fpls.2019.01550.
- Application of Conventional UAV-Based High-Throughput Object Detection to the Early Diagnosis of Pine Wilt Disease by Deep Learning / B. Wu, A. Liang, H. Zhang, et al. // Forest Ecology and Management. 2021. Vol. 486. Article 118986. URL: https://www.sciencedirect.com/science/article/abs/pii/S037811272100075X (дата обращения: 20.09.2025). doi: 10.1016/j.foreco.2021.118986.
- Cucumber leaf disease identification with global pooling dilated convolutional neural network / S. Zhang, S. Zhang, C. Zhang, et al. // Computers and Electronics in Agriculture. 2019. Vol. 162. P. 422–430. doi: 10.1016/j.compag.2019.04.037.
- Advanced Deep Learning Models for Corn Leaf Disease Classification: A Field Study in Bangladesh / S. N. Mohanty, H. Ghosh, I. S. Rahat, et al. // Engineering Proceedings. 2023. Vol. 59. Article 69. URL: https://www.mdpi.com/2673-4591/59/1/69 (дата обращения: 20.09.2025). doi: 10.3390/engproc2023059069.
- Comparison of the Effectiveness of GIS-Based Interpolation Methods for Estimating the Spatial Distribution of Agrochemical Soil Properties / R. Abdulmanov, I. Miftakhov, M. Ishbulatov, et al. // Environmental Technology & Innovation. 2021. Vol. 23. Article 101137. URL: https://www.sciencedirect.com/science/article/abs/pii/S2352186421006180?via%3Dihub (дата обращения: 20.09.2025). doi: 10.1016/j.eti.2021.101137.
- Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress / A. Lowe, N. Harrison, A. P. French, et al. // Plant Methods. 2017. Vol. 13. Article 80. URL: https://plantmethods.biomedcentral.com/articles/10.1186/s13007-017-0233-z (дата обращения: 20.09.2025). doi: 10.1186/s13007-017-0233-z.
- Ценч Ю. С., Курбанов Р. К., Захарова Н. И. Развитие систем управления полетом и средств аэрофотосъемки беспилотных воздушных судов сельскохозяйственного назначения // Сельскохозяйственные машины и технологии. 2024. Т. 18. № 2. С. 11–19.
- Ценч Ю. С., Захарова Н. И. Тенденции развития технических средств аэрофотосъемки сельскохозяйственных земель // Сельскохозяйственные машины и технологии. 2023. Т. 17. № 3. С. 16–26.
- Технические системы цифрового контроля качества обработки почвы / С. И. Старовойтов, Ю. С. Ценч, В. М. Коротченя и др. // Сельскохозяйственные машины и технологии. 2020. Т. 14. № 1. С. 16–21.
- Мударисов С. Г., Мифтахов И. Р. Автоматическое обнаружение и идентификация болезней пшеницы с использованием методов глубокого обучения и применением дронов в режиме реального времени // Вестник Казанского государственного аграрного университета. 2024. Т. 19. № 2(74). С. 90–104. doi: 10.12737/2073-0462-2024-90-104.
- Detection and classification of corn leaf diseases using ResNet-18 / D. R. Oli, M. Dahal, S. Pokhrel, et al. // International Journal on Engineering Technology. 2025. Vol. 11. No. 1. P. 33–41. doi: 10.3126/injet.v11i1.78606.
- ImageNet Large Scale Visual Recognition Challenge / O. Russakovsky, J. Deng, H. Su, et al. // International Journal of Computer Vision. 2015. Vol. 115. P. 211–252. doi: 10.1007/s11263-015-0816-y.
- Development and evaluation of an affordable variable rate applicator controller for precision agriculture / A. Abdalla, A. M. Nafchi // AgriEngineering. 2024. Vol. 6. No. 4. P. 4639–4657. doi: 10.3390/agriengineering6040027.
- Mapping the Variable-Rate Application (VRA) of Precision Fertilizing for Soybean / M. Mawardi, P. H. T. Nugraheni, L. Sutiarso, et al. // Journal of Advanced Research in Applied Mechanics. 2018. Vol. 51. No. 1. P. 1–9. URL: https://www.akademiabaru.com/submit/index.php/aram/article/view/1825 (дата обращения: 20.09.2025).
Supplementary files

