Production of growth factors by fibroblasts in the conditions of the wound process and under the exposure of a bacterial biofilm matrix
- Authors: Yarets Y.I.1
-
Affiliations:
- Republican Research Center for Radiation Medicine and Human Ecology
- Issue: Vol 7, No 4 (2022)
- Pages: 232-238
- Section: Microbiology
- URL: https://ogarev-online.ru/2500-1388/article/view/109966
- DOI: https://doi.org/10.35693/2500-1388-2022-7-4-232-238
- ID: 109966
Cite item
Full Text
Abstract
Aim – to analyze the production of growth factors by fibroblasts in the wound process and under the influence of the bacterial biofilm matrix.
Material and methods. We assessed the levels of such growth factors as: VEGF, TGF-1β, GM-CSF, FGF produced by granulation tissue fibroblasts of acute wound (AW) (group 1, n=9) and chronic wound (CW) (group 2, n=17). Skin fibroblasts (n=5) were used for reference. The primary cultures were obtained by the method of explants. The experimental biofilm matrix included S. aureus, E. faecalis, A. baumannii, P. aeruginosa, K. pneumoniae, P. mirabilis (5 of each species).
Results. The elevated levels of TGF-1β and VEGF, secreted by the primary cultures of fibroblasts, against of the absence of changes in the values of FGF and GM-CSF, are the criteria for the imbalance of growth factors characteristic of CW. The impact of the biofilm matrix P. aeruginosa, K. pneumoniae, A. baumannii, P. mirabilis on skin fibroblasts was accompanied by an increase in the production of VEGF and GM-CSF and a decrease in the synthesis of TGF-1β and FGF. In the experiments with S. aureus and E. faecalis, a similar direction of changes was recorded, but the degree of its severity was lower than for experiments with the gram-negative bacteria.
Conclusion. The obtained results have demonstrated various effects of the biofilm matrix on the production of growth factors by fibroblasts and updated the information on the pathogenesis of CW formation. The revealed imbalance in the synthesis of growth factors by fibroblasts in the granulation tissue of wounds with “borderline” lifetimes (22–28 days) determines the need for tactical approaches in the treatment of CW.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Yuliya I. Yarets
Republican Research Center for Radiation Medicine and Human Ecology
Author for correspondence.
Email: artyut@mail.ru
ORCID iD: 0000-0001-8879-5079
SPIN-code: 8038-5790
PhD, Associate Professor, Head of the Clinical Laboratory Medicine Department
Belarus, GomelReferences
- Trøstrup H, Boe Laulundd AS, Moser C. Insights into host–pathogen interactions in biofilm-Infected wounds reveal possibilities for new treatment strategies. Antibiotics. 2020;9(7):396. doi: 10.3390/antibiotics9070396
- Tchebotar IV, Mayanskiy AN, Mayanskiy NA. Matrix of Microbial Biofilms. Clinical Microbiology and Antimicrobial Chemotherapy. 2016;18(1):9-19. (In Russ.). [Чеботарь И.В., Маянский А.Н., Маянский Н.А. Матрикс микробных биопленок. Клиническая микробиология и антимикробная химиотерапия. 2016;18(1):9-19].
- Kirker KR, James GA, Fleckman P, et al. Stewart Differential effects of planktonic and biofilm MRSA on human fibroblasts. Wound Repair Regen. 2012;20:253-61. doi: 10.1111/j.1524-475X.2012.00769.x
- Yarets YuI, Shevchenko NI, Eremin VF. Methodology of microbiological analysis of wound swabs within the framework of modern concepts of wound infection process. Laboratory Service. 2021;10(3):33-42. (In Russ.). [Ярец Ю.И., Шевченко Н.И., Еремин В.Ф. Методология микробиологического посева раневого отделяемого в рамках современных представлений о диагностике инфекционного процесса. Лабораторная служба. 2021;10(3):33-42]. doi: 10.17116/labs20211003133
- Dinesh K, Karthick M. A study on ESKAPE pathogens the bad bug with no drug. Tropical Journal of Pathology & Microbiology. 2018;4(2):134-138. doi: 10.17511/jopm.2018.i02.02
- Yarets YuI, Loginova OP. A device for filtering solutions containing microorganism cells. Patent BY № 12554. Minsk, 2021. [Ярец Ю.И., Логинова О.П. Устройство для фильтрации растворов, содержащих клетки микроорганизмов. Патент BY на полезную модель № 12554. Минск, 2021]. Available at: https://www.ncip.by/upload/iblock/8d4/8d43869ddf105b68f022f4b20713f564.pdf
- Murray RZ, West ZE, McGuiness W The multifactorial formation of chronic wounds. Wound Practice and Research. 2018;26(1):38-46.
- Dos Santos LC, César PO, Henrique AP, et al. Molecular mediators involved in skin healing: a narrative review. F1000Research. 2022;11:465. doi: 10.12688/f1000research.111159.1
- Bao P, Kodra A, Tomic-Canic M, et al. The role of vascular endothelial growth factor in wound healing. J Surg Res. 2009;153:347-58. doi: 10.1016/j.jss.2008.04.023
- Tarnuzzer RW, Schultz GS. Biochemical analysis of acute and chronic wound environments. Wound Repair Regen. 1996;4:321-325. doi: 10.1046/j.1524-475X.1996.40307.x
- Lauer G, Sollberg S, Cole M, et al. Expression and proteolysis of vascular endothelial growth factor is increased in chronic wounds. J Invest Dermatol. 2000;115:12-18. doi: 10.1046/j.1523-1747.2000.00036.x
- Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of Vascular Endothelial Growth Factor (VEGF). J Cell Mol Med. 2005;9(4):777-794. doi: 10.1111/j.1582-4934.2005.tb00379.x
- Barrientos S, Stojadinovic O, Golinko MS, et al. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585-601. doi: 10.1111/j.1524-475X.2008.00410.x
- Obolenskiy VN. Modern treatment methods of the chronic wounds. Russian Medical Journal. 2013;5:282-290. (In Russ.). [Оболенский В.Н. Хроническая рана: обзор современных методов лечения. Русский медицинский журнал. 2013;5:282-290]. doi: 10.21518/2079-701X-2016-10-148-154
- Yarets YuI, Slavnikov IA, Dundarov ZA. Colonized, critically colonized and infected wounds: differentiation using clinical and microbiological and morphological methods of investigation. Health and Ecology Issues. 2022;19(2):63-75. (In Russ.). [Ярец Ю.И., Славников И.А., Дундаров З.А. Колонизированные, критически колонизированные и инфицированные раны: дифференциация с использованием клинико-микробиологических и морфологических методов исследования. Проблемы здоровья и экологии. 2022;19(2):63-75]. doi: 10.51523/2708-6011.2022-19-2-08
- Yarets YuI. Significance of studying the cytotoxicity of bacterial biofilm for assessing the potential ability of the microbiota to prolong the inflammatory phase of the wound process. Laboratory Diagnostics. Eastern Europe. 2022;11(2):198-213. (In Russ.). [Ярец Ю.И. Значимость исследования цитотоксичности бактериальной биопленки для оценки потенциальной способности микробиоты пролонгировать воспалительную фазу раневого процесса. Лабораторная диагностика. Восточная Европа. 2022;11(2):198-213]. doi: 10.34883/PI.2022.11.2.017
- Bjarnsholt T, Kirketerp-Møller KK, Jensen PØ, et al. Why chronic wounds will not heal: A novel hypothesis. Wound Repair Regen. 2008;16:2-10. doi: 10.1111/j.1524-475X.2007.00283.x
- Trøstrup H, Lerche CJ, Christophersen LJ, et al. Pseudomonas aeruginosa biofilm hampers murine central wound healing by suppression of vascular endothelial growth factor. Int Wound J. 2018;15:123-132. doi: 10.1111/iwj.12846
- Secor PR, James GA, Fleckman P, et al. Staphylococcus aureus biofilm and planktonic cultures differentially impact gene expression, mapk phosphorylation, and cytokine production in human keratinocytes. BMC Microbiol. 2011;11:153-156. doi: 10.1186/1471-2180-11-143
- Resch A, Leicht S, Saric M, et al. Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics. 2006;6:1867-77. doi: 10.1002/pmic.200500531
Supplementary files
