Artificial Intelligence as a Tool for Selective Migration Policy: Methodology, Effectiveness, and Socio-Cultural Consequences
- Authors: Taltinov M.I.1, Burda M.A.1
-
Affiliations:
- Issue: No 4 (2025)
- Pages: 35-45
- Section: Articles
- URL: https://ogarev-online.ru/2454-0684/article/view/368976
- EDN: https://elibrary.ru/HFQTFC
- ID: 368976
Cite item
Full Text
Abstract
In the context of growing global mobility and increasing migration challenges, states are increasingly resorting to digital technologies to optimize migration management. In this context, artificial intelligence (AI) is transforming from an auxiliary tool into a central element of selective migration policy, providing strategic selection of migrants based on predictive analytics and big data. The article analyzes specific examples of AI implementation in migration systems, such as ETIAS in the EU, USCIS in the US, and the Global Talent Visa in the UK, demonstrating the shift from bureaucratic procedures to algorithmic management. The author shows that, despite increased operational efficiency and analytical power, the widespread use of AI is associated with significant ethical and socio-cultural risks: algorithmic discrimination, opacity of decisions ("black boxes"), the formation of "digital inequality," and the dehumanization of the migration process. The methodological foundation of the study consists of general logical techniques of the dialectical method (analysis, comparison), methods of systemic analysis, and algorithmic management. The main results of the study are as follows. Special attention is paid to the problem of reproducing historical biases through training models on biased data, which leads to the systematic marginalization of migrants from certain regions. Since algorithms are trained on archives of past decisions, they can reinforce colonial stereotypes, selective practices, and ethnic stereotypes, transforming them into "objective" assessments of risk or integration potential. The article emphasizes the need for an interdisciplinary reflexive approach, in which migration studies, as an integrative humanitarian discipline, takes on the role of a control mechanism capable of exposing the hidden ideologies of algorithms and protecting the rights of migrants. It is argued that only the combination of technological innovations with ethical frameworks, such as the OECD principles on AI and the provisions of European regulation on artificial intelligence, and the recognition of migrant agency, will preserve migration as a space of freedom rather than turn it into a technocratic filtering procedure.
About the authors
Maxim Igorevich Taltinov
Email: maximus93250@mail.ru
ORCID iD: 0009-0002-9474-7019
Mihail Aleksandrovich Burda
Email: byrdamix@mail.ru
ORCID iD: 0000-0003-1520-3882
References
European Commission. Proposal for a Regulation on Artificial Intelligence. Digital Strategy. 2021. URL: https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence (дата обращения: 01.10.2023). International Organization for Migration (IOM). Digitalisation of Migration Management: A Global Perspective. 2023. URL: https://publications.iom.int/books/digitalisation-migration-global-perspective (дата обращения: 01.10.2023). Organisation for Economic Co-operation and Development (OECD). OECD Principles on Artificial Intelligence. 2024. URL: https://www.oecd.org/going-digital/ai/principles/ (дата обращения: 01.10.2023). United Nations High Commissioner for Refugees (UNHCR). Innovation: Digital Identity. 2023. URL: https://www.unhcr.org/innovation/digital-id (дата обращения: 01.10.2023). Amnesty International. Artificial Intelligence and Human Rights. 2023. URL: https://www.amnesty.org/en/what-we-do/artificial-intelligence/ (дата обращения: 01.10.2023). Privacy International. AI in Border Control: Automated Surveillance and Predictive Policing at Borders. 2022. URL: https://privacyinternational.org/reports (дата обращения: 01.10.2023). AlgorithmWatch. Automating Society Report 2023. 2023. URL: https://algorithmwatch.org/en/publication/automating-society/ (дата обращения: 01.10.2023). European Parliament. Artificial Intelligence in Migration Management: Risks and Fundamental Rights Implications (EPRS Briefing). 2022. URL: https://www.europarl.europa.eu/RegData/etudes/BRIE/2022/698827/EPRS_BRI(2022)698827EN.pdf (дата обращения: 01.10.2023). UK Visas and Immigration (UKVI). Global Talent Visa: Guidance for Applicants and Endorsing Bodies. GOV.UK. 2024. URL: https://www.gov.uk/government/publications/global-talent-visa-guidance (дата обращения: 01.10.2023). U.S. Department of Homeland Security (DHS). DHS Artificial Intelligence Strategy. 2020. URL: https://www.dhs.gov/publication/dhs-artificial-intelligence-strategy (дата обращения: 01.10.2023). U.S. Department of Homeland Security (DHS). AI Accountability Framework. 2023. URL: https://www.dhs.gov/sites/default/files/publications/aiaccountabilityframework1.pdf (дата обращения: 01.10.2023). eu-LISA. ETIAS – The European Travel Information and Authorisation System. 2023. URL: https://www.eu-lisa.europa.eu/solutions/etias (дата обращения: 01.10.2023). Selbst, A. D., & Barocas, S. The Intuitive Appeal of Explainable Machines. Fordham Law Review. 2018. 87(3). С. 1085-1139. Binns, R. Algorithmic Accountability and Public Reason. Philosophy & Technology. 2018. 31(4). С. 543-556. doi: 10.1007/s13347-017-0263-5. O'Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown Publishing, 2016. Crawford, K. Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence. Yale University Press, 2021. ISBN 978-0300209570. Пожарский, Д. В., & Радько, Т. Н. Функции государства: пределы цифровых технологий. Труды Академии управления МВД России. 2022. № 2. С. 17-24. doi: 10.24412/2072-9391-2022-262-17-24. Баранова, Л. Ю., & Ягья, Т. С. Информационно-коммуникационные технологии как системообразующая часть цифровой экономики. Петербургский экономический журнал. 2023. № 1. С. 31-42. Михуля, Д. Ю. Методические подходы к оценке цифровизации публичного управления и государственных услуг. Вестник Воронежского государственного университета. Серия: Экономика и управление. 2024. № 2. С. 54-70. doi: 10.17308/econ.2024.2/11829. Петрунин, Ю. Ю. Искусственные нейронные сети в экономике: математический инструмент, модель или методология? Вестник Московского университета. Серия 6: Экономика. 2024. № 59(4). С. 92-113. doi: 10.55959/MSU0130-0105-6-59-4-5. Котова, Д. К. Искусственный интеллект в политике: отношение государств к искусственному интеллекту. В Сборнике материалов Международной научной конференции молодых исследователей "Социальный инженер-2023". М.: Российский государственный университет им. А.Н. Косыгина, 2023. С. 198-201.
Supplementary files
