Research methods for digitalization of transport systems using artificial intelligence

Capa

Citar

Texto integral

Resumo

Background. There is a need to move from isolated “point” solutions to comprehensive digitalization of transport systems that integrates infrastructure-level pavement monitoring, operational traffic management, and strategic planning. To this end, it is reasonable to combine machine learning (for forecasting), genetic algorithms (for optimization), and multi-agent simulation (for robustness checking).

Purpose. To assess the effect of such integration using a set of metrics (delays, costs, risk, profit, service) and an integral objective function F.

Materials and methods. Infrastructure level: computer vision (YOLO), mAP ≈ 0.84; defect-generation forecasting (XGBoost), error ≤ 12%. Operational level: short-term traffic-intensity forecasts (LSTM/XGBoost, RMSE 8–10%) and traffic-signal phase optimization with a genetic algorithm. Strategic level: demand and tariff forecasting, optimization scenarios. The robustness of solutions was verified via multi-agent simulation; comparisons were made against baseline (“as-is”) scenarios.

Results. Total delays were reduced by 37%, overall logistics costs by 12%, and profitability increased by 10–11%; with a 20% demand increase, >90% of deliveries were completed within SLA. The integral function F improved by 22–24%. The plans demonstrated robustness and sensitivity to criterion weights.

Sobre autores

Aleksandr Podberezkin

Moscow Automobile and Road Construction State Technical University

Autor responsável pela correspondência
Email: a.podberezkin@gmail.com

Senior Lecturer of the Department of Automated Control Systems

 

Rússia, 64, Leningradsky pr., Moscow, 125319, Russian Federation

Andrey Ostroukh

Moscow Automobile and Road Construction State Technical University

Email: ostroukh@mail.ru

Doctor of Technical Sciences, Professor, Professor of the Department of Automated Control Systems

 

Rússia, 64, Leningradsky pr., Moscow, 125319, Russian Federation

Aleksandr Borzenkov

Moscow Automobile and Road Construction State Technical University

Email: borzenkov03h@mail.ru

Student of the Department of Automated Control Systems

 

Rússia, 64, Leningradsky pr., Moscow, 125319, Russian Federation

Artyom Shmonin

Moscow Automobile and Road Construction State Technical University

Email: shmoninam@mail.ru

Student of the Department of Automated Control Systems

 

Rússia, 64, Leningradsky pr., Moscow, 125319, Russian Federation

Cezar Pronin

Moscow Automobile and Road Construction State Technical University

Email: caesarpr12@gmail.com

Senior Lecturer of the Department of Automated Control Systems

 

Rússia, 64, Leningradsky pr., Moscow, 125319, Russian Federation

Bibliografia

  1. Ministry of Internal Affairs of the Russian Federation [MVD Rossii]. (n.d.). Analytical reviews of road safety status. Retrieved from https://нцбдд.мвд.рф/ресурсы/аналитические обзоры состояния безопасно (accessed: 20.07.2025).
  2. Rosstandart. (2017). GOST R 50597-2017. Roads and streets. Requirements for operational condition. Moscow: Standartinform. 21 pp.
  3. Ministry of Regional Development of the Russian Federation [Minregion Rossii]. (2012). SP 78.13330.2012. Roads. Updated version of SNiP 2.05.02-85. Moscow. 89 pp.
  4. Akopov, A. S. (2025). MBHGA: A matrix-based hybrid genetic algorithm for solving an agent-based model of controlled trade interactions. IEEE Access, 13, 26843–26863. https://doi.org/10.1109/ACCESS.2025.3539460. EDN: https://elibrary.ru/NPLKCJ
  5. Borzenkov, A. M., Ostroukh, A. V., Pronin, C. B., Podberezkin, A. A., & Kuftinova, N. G. (2024). Multi-criteria analysis of genetic algorithm applications in transportation logistics. In 2024 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED) (pp. 1–4). Moscow. https://doi.org/10.1109/TIRVED63561.2024.10769798
  6. Ceylan, H., & Bell, M. G. H. (2018). Traffic signal timing optimization based on genetic algorithm approach, including driver’s route choice. Transportation Research Part B: Methodological, 114, 25–41. https://doi.org/10.1016/j.trb.2018.05.009
  7. World Health Organization [WHO]. (2023). Global status report on road safety 2023. Geneva. 232 p. Retrieved from https://www.who.int/publications/i/item/9789241565684 (accessed: 05.07.2025).
  8. Hauer, E. (2004). The harm done by tests of significance. Accident Analysis & Prevention, 36(3), 495–500. https://doi.org/10.1016/S0001-4575(03)00036-8. Retrieved from https://www.sciencedirect.com/science/article/abs/pii/S0001457503000368 (accessed: 05.08.2025).
  9. Kiselev, S. A., Podberezkin, A. A., Borzenkov, A. M., Ostroukh, A. V., & Pronin, C. B. (2025). Dynamic pricing in air cargo: Machine learning and genetic algorithm-based optimization. В 2025 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF) (с. 1–5). St. Petersburg, Russian Federation. https://doi.org/10.1109/WECONF65186.2025.11017136
  10. Mansurova, M. et al. (2024). Multi-level intelligent control system for inter-vehicle communication between smart traffic lights with computer vision and autonomous electric vehicles. В 2024 International Symposium on Sensing and Instrumentation in 5G and IoT Era (ISSI) (с. 1–6). Lagoa, Portugal. https://doi.org/10.1109/ISSI63632.2024.10720507
  11. Ostroukh, A., Kuftinova, N., Borzenkov, A., Podberezkin, A., & Ostroukh, I. (2024). Research on using deep learning for transport demand prediction. В 2024 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED) (с. 1–5). Moscow. https://doi.org/10.1109/TIRVED63561.2024.10769599
  12. Puscar, F. M. (2017). Safety diagnosis of vehicle-bicycle interactions using computer vision systems: A case study in Vancouver, B.C. (Магистерская диссертация). University of British Columbia, Vancouver, BC, Canada. https://doi.org/10.14288/1.0343989. Retrieved from https://open.library.ubc.ca/soa/cIRcle/collections/ubctheses/24/items/1.0343989 (accessed: 06.08.2025).
  13. Radeev, N., & Vinogradova, K. (2025). Semi-automated framework for feature engineering in machine learning and data analysis. В 2025 IEEE 26th International Conference of Young Professionals in Electron Devices and Materials (EDM) (с. 1520–1525). Altai, Russian Federation. https://doi.org/10.1109/EDM65517.2025.11096892
  14. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. В 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (с. 779–788). Las Vegas, NV, USA. https://doi.org/10.1109/CVPR.2016.91
  15. St-Aubin, P., Saunier, N., & Miranda-Moreno, L. (2017). Large-scale automated proactive road safety analysis using video data. University of British Columbia. https://doi.org/10.1016/j.trc.2015.04.007. Retrieved from https://www.researchgate.net/publication/275412773_Large-scale_automated_proactive_road_safety_analysis_using_video_data (accessed: 06.08.2025).
  16. Yan, S., Fu, Y., Zhang, W., Yang, W., Yu, R., & Zhang, F. (2023). Multi-target instance segmentation and tracking using YOLOv8 and BoT-SORT for video SAR. В 2023 5th International Conference on Electronic Engineering and Informatics (EEI) (с. 506–510). Wuhan, China. https://doi.org/10.1109/EEI59236.2023.10212903
  17. Zhang, Z., Zhu, H., Zhang, W., Cai, Z., Zhu, L., & Li, Z. (2023). Multi-objective optimization of traffic signal timing at typical junctions based on genetic algorithms. Computer Systems Science and Engineering, 47, 1901–1917. https://doi.org/10.32604/csse.2023.039395. EDN: https://elibrary.ru/FPUNQR

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Podberezkin A.A., Ostroukh A.V., Borzenkov A.M., Shmonin A.M., Pronin C.B., 2025

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».