Digital twins and the Harrington scale in railway automation and telemechanics reliability management
- 作者: Gorelik A.V.1, Istomin A.V.1, Kuzmina E.V.1
-
隶属关系:
- Russian University of Transport (MIIT)
- 期: 卷 15, 编号 3 (2025)
- 页面: 125-140
- 栏目: Articles
- ##submission.datePublished##: 25.11.2025
- URL: https://ogarev-online.ru/2328-1391/article/view/356725
- DOI: https://doi.org/10.12731/3033-5965-2025-15-3-379
- ID: 356725
如何引用文章
全文:
详细
Background. Modern railway automation and telemechanics systems are complex technical complexes that require the introduction of modern monitoring and control methods. The integration of digital twin technologies with the readiness coefficient assessment system using the Harrington scale is due to the need to move from reactive maintenance to predictive reliability management, which is an urgent scientific and technical task.
Purpose. Development of an integrated approach to assessing and managing the reliability of railway automation technical support based on the integration of digital twin technologies and the Harrington scale for the readiness coefficient.
Materials and methods. Authors use an integrated approach that includes: mathematical modeling of digital twins of harvester devices; statistical analysis of reliability indicators (coefficient of readiness, recovery time); application of the Harrington scale for a unified assessment of technical condition; analysis of practical data on the operation of switches, rail circuits and traffic lights.
Results. An integrated reliability assessment system has been developed, allowing: increase the equipment availability factor by 0.17-0.25%; reduce operating costs by 25-30%; reduce the number of failures by 40-60%; visualize the technical condition through a unified evaluation scale. The economic efficiency of implementing the system with an annual economic effect of up to 566 thousand rubles per switch has been proven. The results of the study can be applied to the creation of predictive maintenance systems for railway automation and telemechanics devices.
作者简介
Aleksandr Gorelik
Russian University of Transport (MIIT)
编辑信件的主要联系方式.
Email: agorelik@yandex.ru
SPIN 代码: 9543-4715
Scopus 作者 ID: 57200751967
Director of the Academy “Russian Open Academy of Transport”, Doctor of Technical Sciences
俄罗斯联邦, 9 building 9, Obrazcova Str. Moscow, 127055, Russian Federation
Aleksandr Istomin
Russian University of Transport (MIIT)
Email: aistomin1998@mail.ru
Senior Lecturer, Department of Transport Infrastructure Management Systems
俄罗斯联邦, 9 building 9, Obrazcova Str. Moscow, 127055, Russian Federation
Elena Kuzmina
Russian University of Transport (MIIT)
Email: kuzminaelena96@yandex.ru
Assistant Professor at the Department of Transport Infrastructure Management Systems
俄罗斯联邦, 9 building 9, Obrazcova Str. Moscow, 127055, Russian Federation
参考
- Lyashchenko, A. M., Shvalov, D. V., & Glazunov, D. V. (2021). Improving the reliability of automation and remote control systems in railway transport. Proceedings of Tula State University. Technical Sciences, 5, 504–509. https://doi.org/10.24412/2071-6168-2021-5-504-509. EDN: https://elibrary.ru/EHOZAW
- Sokolov, M. M. (2024). Fundamentals of railway automation and remote control at stations. Omsk: Omsk State Transport University. 77 pp. ISBN: 978-5-94941-340-1. EDN: https://elibrary.ru/BLAFZK
- Sapozhnikov, V. V., Sapozhnikov, V. V., Efanov, D. V., & Shamanov, V. I. (2017). Reliability of railway automation, remote control and communication systems [Textbook for specialists]. Moscow: Educational and Methodological Center for Education in Railway Transport. 318 pp. ISBN: 978-5-906938-01-5. EDN: https://elibrary.ru/YOYVNZ
- Aleksandrovich, S. K. (2022). Digital technologies in railway transport. Research Center “Vector of Development”, 9, 199–201. EDN: https://elibrary.ru/AYTQWW
- Sokolov, M. M. (2020). Fundamentals of railway automation and remote control (Vol. 1). Omsk: Omsk State Transport University. 79 pp. ISBN: 978-5-94941-258-9. EDN: https://elibrary.ru/FZWRAA
- Gorelik, A. V., Kuzmina, E. V., & Istomin, A. V. (2021). Technical efficiency of service maintenance for railway infrastructure facilities, considering methods for assessing key production processes in automation and remote control. Naukosfera, 10-1, 100–103. EDN: https://elibrary.ru/SFVPGZ
- Naumova, D. V. (2020). Integrated approach to the development of railway automation and telemechanics (RAT). Automation, Communication, Informatics, 10, 28–30. EDN: https://elibrary.ru/ZFVVAH
- Nikonova, Ya. I. (2024). Digital twins in railway transport: Benefits and implementation challenges. Municipal Academy, 1, 124–133. https://doi.org/10.52176/2304831X_2024_01_124. EDN: https://elibrary.ru/NOTLCM
- Rimskaya, O. N., & Anokhov, I. V. (2021). Digital twins and their application in transport economics. Strategic Decisions and Risk Management, 12(2), 127–137. https://doi.org/10.17747/2618-947X-2021-2-127-137. EDN: https://elibrary.ru/ZOLLNY
- Gerasimov, R. E., & Flyagina, T. A. (2025). Application of digital twins and simulation systems for optimizing economic decisions in Russia’s transport sector. Bulletin of Transport, 8, 39–40. EDN: https://elibrary.ru/TWHGMO
- Kachilov, D. B. (2023). Economic feasibility of applying the “digital twin” technology. Bulletin of Science, 3(2), 195–201. EDN: https://elibrary.ru/KHKLIG
- Zhuravlev, I. A., Gusev, I. A., Skripnichenko, I. G., & Kurasheva, G. G. (2022). Algorithm for calculating the availability coefficient of railway automation and remote control systems for newly designed stations. Science and Business: Ways of Development, 4(130), 136–138. EDN: https://elibrary.ru/CYHCGG
- Gorelik, A. V., Malykh, A. N., & Orlov, A. V. (2021). Assessing the impact of the readiness of Russian Railways’ infrastructure facilities on risks of losses in transportation processes. Reliability, 21(4), 53–56. https://doi.org/10.21683/1729-2646-2021-21-4-53-56. EDN: https://elibrary.ru/AQFDPW
- Zhuravlev, I. A. (2012). Principles of simulation modeling of the average time to restore railway automation devices. Science and Technology in Transport, 3, 86–89. EDN: https://elibrary.ru/PBUCGF
- Istomina, L. A. (2023). Statistics. General theory of statistics [Educational and methodological manual for students in the field of Economics (38.00.00)]. Izhevsk: Udmurt State Agricultural University. 192 pp. EDN: https://elibrary.ru/CHXORL
- Karmanova, A. V., & Kazakevich, A. V. (2024). Mathematics with elements of statistics: Probability theory and mathematical statistics. Krasnodar: Kuban State Agrarian University named after I. T. Trubilin. 108 pp. EDN: https://elibrary.ru/BPOQRO
- Vorobyov, N. N., Zheludkova, T. V., Krivokora, Yu. N., & Ionova, A. Ch. (2023). Statistics: Theory of statistics. Stavropol: LLC “Stavropol Service School”. 138 pp. ISBN: 978-5-6049289-7-4. EDN: https://elibrary.ru/JDGLDM
- Donskova, O. A., & Smotrova, E. E. (2021). Statistics [Educational and methodological manual for course work]. Volgograd: Volgograd State Agrarian University. 84 pp. EDN: https://elibrary.ru/QHWWFT
- Shishkina, I. V. (2021). Sixth-generation turnout switches. History and Prospects of Transport Development in Northern Russia, 1, 47–50. EDN: https://elibrary.ru/LKOWJQ
- Shatrov, S. L., Lipatova, O. V., Kravchenko, A. V., & Keizer, I. A. (2021). Theory and methodology for assessing the economic efficiency of using fixed assets in railway transport. Gomel: Educational Institution “Belarusian State Transport University”. 198 pp. ISBN: 978-985-891-007-5. EDN: https://elibrary.ru/HFUCER
- Tereshina, N. P., Podsorin, V. A., Kozhevnikov, Yu. N., et al. (2020). Economics of railway transport [Textbook for secondary vocational education]. Saratov: Profobrazovanie. 342 pp. ISBN: 978-5-4488-0886-9. EDN: https://elibrary.ru/SPVVLK
- Levin, D. Yu. (2021). Economics of railway transport operation. Moscow: FSBI DPO “Educational and Methodological Center for Education in Railway Transport”. 440 pp. ISBN: 978-5-907206-52-6. EDN: https://elibrary.ru/XXNSVJ
补充文件


