胎儿先天性心脏病的孕产管理: 当前挑战与现代医学的发展趋势
- 作者: Bedoeva I.O.1, Pagieva L.K.1, Shamsueva M.T.1, Nemkova Y.P.2, Shigalugova M.M.1, Plieva B.I.1, Kudzieva M.V.1, Kireychev A.M.2, Kanbekova D.E.3, Abramov I.I.4, Kortieva V.V.5, Ustinova M.V.6, Magomedova Z.M.7
-
隶属关系:
- North-Ossetian State Medical Academy
- N.I. Pirogov Russian National Research Medical University
- Bashkir State Medical University
- Tula State University
- Rostov State Medical University
- Kuban State Medical University
- Dagestan State Medical University
- 期: 卷 12, 编号 1 (2025)
- 页面: 27-40
- 栏目: Reviews
- URL: https://ogarev-online.ru/2313-8726/article/view/310006
- DOI: https://doi.org/10.17816/aog641762
- ID: 310006
如何引用文章
详细
先天性心脏病目前在儿童出生缺陷中占据首位,并仍然是儿童死亡的主要原因。据不同统计数据,儿童先天性心脏病的发病率差异较大,范围为每1000例活产儿中4至50例。由于严重先天性心脏病相对少见,并且过去缺乏跨学科合作,围产期心脏病学的研究往往局限于小规模病例系列或单中心研究。本综述的目的是分析现有文献中关于先天性心脏病胎儿及新生儿围产期管理的最新进展,包括胎儿期诊断的新方法、产前及分娩期管理策略,并提出改善医疗可及性的建议,同时明确未来研究方向。文献检索在电子数据库(PubMed、Google Scholar)中进行,使用的关键词及其组合(俄文和英文)包括:“врождённые пороки сердца / congenital heart defects”(先天性心脏病)、“ВПС / CHD”(先心病)、“фетальная кардиология / fetal cardiology”(胎儿心脏病学)、“внутриутробная визуализация / intrauterine imaging”(宫内影像学)、“фетальная хирургия / fetal surgery”(胎儿外科)。胎儿心脏病学诊断技术的快速发展、围产期母胎监测的改进以及宫内手术的进步,对“母亲-先天性心脏病新生儿”群体的妊娠过程及产后结局产生了重要影响。胎儿超声心动图和标准化产科筛查有助于更早发现受先天性心脏病影响的妊娠,并推动产前咨询方式的改进。此外,以围产期多学科家庭支持及分娩管理为核心的胎儿心脏病学护理标准化方案正在逐步推广应用。
作者简介
Irina O. Bedoeva
North-Ossetian State Medical Academy
编辑信件的主要联系方式.
Email: bestielal@rambler.ru
ORCID iD: 0009-0003-0232-9475
Student
俄罗斯联邦, 40 Pushkinskaya st, Vladikavkaz, 362025Lika K. Pagieva
North-Ossetian State Medical Academy
Email: pagievalika@yandex.ru
ORCID iD: 0009-0002-7448-0994
Student
俄罗斯联邦, 40 Pushkinskaya st, Vladikavkaz, 362025Medina T. Shamsueva
North-Ossetian State Medical Academy
Email: Shamsuevam@mail.ru
ORCID iD: 0009-0007-6853-9095
Student
俄罗斯联邦, 40 Pushkinskaya st, Vladikavkaz, 362025Yulia P. Nemkova
N.I. Pirogov Russian National Research Medical University
Email: ulianemkova523@gmail.com
ORCID iD: 0009-0005-2784-980X
Student
俄罗斯联邦, MoscowMilana M. Shigalugova
North-Ossetian State Medical Academy
Email: milanashigalugova07@gmail.com
ORCID iD: 0009-0009-5296-0920
Student
俄罗斯联邦, 40 Pushkinskaya st, Vladikavkaz, 362025Bella I. Plieva
North-Ossetian State Medical Academy
Email: bellapl@mail.ru
ORCID iD: 0009-0004-7466-7809
Student
俄罗斯联邦, 40 Pushkinskaya st, Vladikavkaz, 362025Mariya V. Kudzieva
North-Ossetian State Medical Academy
Email: kudzieva1@mail.ru
ORCID iD: 0009-0001-6082-5050
Student
俄罗斯联邦, 40 Pushkinskaya st, Vladikavkaz, 362025Aleksey M. Kireychev
N.I. Pirogov Russian National Research Medical University
Email: KirAlex2000@yandex.ru
ORCID iD: 0009-0007-6486-9505
Student
俄罗斯联邦, MoscowDarya E. Kanbekova
Bashkir State Medical University
Email: grilonova@gmail.com
ORCID iD: 0009-0003-9291-0537
Student
俄罗斯联邦, UfaIgor I. Abramov
Tula State University
Email: ai89190742045@yandex.ru
ORCID iD: 0009-0001-8556-1346
Student
俄罗斯联邦, TulaVictoria V. Kortieva
Rostov State Medical University
Email: 220300viktoria@mail.ru
ORCID iD: 0009-0007-6491-760X
Student
俄罗斯联邦, Rostov-on-DonMilena V. Ustinova
Kuban State Medical University
Email: gmilaaaaa@mail.ru
ORCID iD: 0009-0000-8528-5022
Student
俄罗斯联邦, KrasnodarZirifa M. Magomedova
Dagestan State Medical University
Email: miss.zirifa@yandex.ru
ORCID iD: 0009-0009-6945-8128
Student
俄罗斯联邦, Makhachkala参考
- Saperova EV, Vahlova IV. Congenital heart diseases in children: incidence, risk factors, mortality. Current Pediatrics. 2017;16(2):126–133. doi: 10.15690/vsp.v16i2.1713 EDN: YRGVRT
- Ziganshin AM, Nizamutdinova RI, Nagimova EM, Khalitova RSh. Risk factors of intrauterine fetal death. Russian Bulletin of Obstetrician-Gynecologist. 2023;23(2):4752. doi: 10.17116/rosakush20232302147 EDN: VZXJVN
- Rudaeva EV, Mozes VG, Kashtalap VV, et al. Congenital heart disease and pregnancy. Fundamental and Clinical Medicine. 2019;4(3):102–112. doi: 10.23946/2500-0764-2019-4-3-102-112 EDN: EAKKTS
- Colaco SM, Karande T, Bobhate PR, et al. Neonates with critical congenital heart defects: Impact of fetal diagnosis on immediate and short-term outcomes. Ann Pediatr Cardiol. 2017;10(2):126–130. doi: 10.4103/apc.APC_125_16
- Aksenov AN, Bocharova II, Troitskaia MV, et al. The effect of surgical correction of congenital heart defects in mothers on the health status of their newborns. Russian Bulletin of Obstetrician-Gynecologist. 2020;20(2):5563. doi: 10.17116/rosakush20202002155 EDN: VQNOBL
- Pervunina TM, Vasichkina ES, Erman MV. Personalized approach in the management of children with cardiorenal syndrome (combined congenital heart and kidney defects). Russian Journal for Personalized Medicine. 2023;3(2):77–81. doi: 10.18705/2782-3806-2023-3-2-77-81 EDN: VEMNZA
- Guseh S, Tworetzky W. Transforming congenital heart disease management: advances in fetal cardiac interventions. Prenat Diagn. 2024;44(6-7):733–738. doi: 10.1002/pd.6592
- Oster ME, Kim CH, Kusano AS, et al. A population-based study of the association of prenatal diagnosis with survival rate for infants with congenital heart defects. Am J Cardiol. 2014;113(6):1036–1040. doi: 10.1016/j.amjcard.2013.11.066
- Holland BJ, Myers JA, Woods CR Jr. Prenatal diagnosis of critical congenital heart disease reduces risk of death from cardiovascular compromise prior to planned neonatal cardiac surgery: a meta-analysis. Ultrasound Obstet Gynecol. 2015;45(6):631–638. doi: 10.1002/uog.14882
- Sullivan ID. Prenatal diagnosis of structural heart disease: does it make a difference to survival? Arch Dis Child Fetal Neonatal Ed. 2002;87(1):F19–20. doi: 10.1136/fn.87.1.f19
- Peyvandi S, De Santiago V, Chakkarapani E, et al. Association of prenatal diagnosis of critical congenital heart disease with postnatal brain development and the risk of brain injury. JAMA Pediatr. 2016;170(4):e154450. doi: 10.1001/jamapediatrics.2015.4450
- Mahle WT, Clancy RR, McGaurn SP, et al. Impact of prenatal diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left heart syndrome. Pediatrics. 2001;107(6):1277–1282. doi: 10.1542/peds.107.6.1277
- Gorokhova SG, Morozova TE, Arakelyants AA, et al. Algorithm of echocardiography in pregnant women. Russian Journal of Cardiology. 2018;23(12):75–83. doi: 10.15829/1560-4071-2018-12-75-83 EDN: YPPAZN
- AIUM-ACR-ACOG-SMFM-SRU practice parameter for the performance of standard diagnostic obstetric ultrasound examinations. J Ultrasound Med. 2018;37(11):13–24. doi: 10.1002/jum.14831
- Salomon LJ, Alfirevic Z, Berghella V, et al. ISUOG practice guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol. 2022;59(6):840–856. doi: 10.1002/uog.24888
- Carvalho JS, Axt-Fliedner R, Chaoui R, et al. ISUOG practice guidelines (updated): fetal cardiac screening. Ultrasound Obstet Gynecol. 2023;61(6):788–803. doi: 10.1002/uog.26224
- AIUM practice parameter for the performance of detailed second- and third-trimester diagnostic obstetric ultrasound examinations. J Ultrasound Med. 2019;38(12):3093–3100. doi: 10.1002/jum.15163
- Pomortsev AV, Karakhalis MN, Matulevich SA, et al. Congenital heart diseases: risk factors and ultrasound diagnostic potential at the first screening. Innovative Medicine of Kuban. 2023;8(4):51–59. doi: 10.35401/2541-9897-2023-8-4-51-59 EDN: TPLIWH
- AIUM practice parameter for the performance of fetal echocardiography. J Ultrasound Med. 2020;39(1):E5–E16. doi: 10.1002/jum.15188
- Sood E, Newburger JW, Anixt JS, et al. American heart association council on lifelong congenital heart disease and heart health in the young and the council on cardiovascular and stroke nursing. neurodevelopmental outcomes for individuals with congenital heart disease: updates in neuroprotection, risk-stratification, evaluation, and management: a scientific statement from the American heart association. Circulation. 2024;149(13):e997–e1022. doi: 10.1161/CIR.0000000000001211
- Quartermain MD, Pasquali SK, Hill KD, et al. Variation in prenatal diagnosis of congenital heart disease in infants. Pediatrics. 2015;136(2):e378–385. doi: 10.1542/peds.2014-3783
- Levy DJ, Pretorius DH, Rothman A, et al. Improved prenatal detection of congenital heart disease in an integrated health care system. Pediatr Cardiol. 2013;34(3):670–679. doi: 10.1007/s00246-012-0526-y
- Moon-Grady AJ, Donofrio MT, Gelehrter S, et al. Guidelines and recommendations for performance of the fetal echocardiogram: an update from the American society of echocardiography. J Am Soc Echocardiogr. 2023;36(7):679–723. doi: 10.1016/j.echo.2023.04.014
- Vepa S, Alavi M, Wu W, et al. Prenatal detection rates for congenital heart disease using abnormal obstetrical screening ultrasound alone as indication for fetal echocardiography. Prenat Diagn. 2024;44(6-7):706–716. doi: 10.1002/pd.6544
- McLean KC, Meyer MC, Peters SR, et al. Obstetric imaging practice characteristics associated with prenatal detection of critical congenital heart disease in a rural US region over 20 years. Prenat Diagn. 2024;44(6-7):698–705. doi: 10.1002/pd.6551
- Mamedov MN, Savchuk EA, Karimov AK. Artificial intelligence in cardiology. International Heart and Vascular Disease Journal. 2024;12(43):5–11. doi: 10.24412/2311-1623-2024-43-5-11 EDN: VNYVEA
- Day TG, Budd S, Tan J, et al. Prenatal diagnosis of hypoplastic left heart syndrome on ultrasound using artificial intelligence: how does performance compare to a current screening programme? Prenat Diagn. 2024;44(6-7):717–724. doi: 10.1002/pd.6445
- Hutchinson D, McBrien A, Howley L, et al. First-trimester fetal echocardiography: identification of cardiac structures for screening from 6 to 13 weeks’ gestational age. J Am Soc Echocardiogr. 2017;30(8):763–772. doi: 10.1016/j.echo.2017.03.017
- Pike JI, Krishnan A, Donofrio MT. Early fetal echocardiography: congenital heart disease detection and diagnostic accuracy in the hands of an experienced fetal cardiology program. Prenat Diagn. 2014;34(8):790–796. doi: 10.1002/pd.4372
- Persico N, Moratalla J, Lombardi CM, et al. Fetal echocardiography at 11–13 weeks by transabdominal high-frequency ultrasound. Ultrasound Obstet Gynecol. 2011;37(3):296–301. doi: 10.1002/uog.8934
- Helmbæk ME, Sundberg K, Jørgensen DS, et al. Clinical implementation of first trimester screening for congenital heart defects. Prenat Diagn. 2024;44(6-7):688–697. doi: 10.1002/pd.6584
- Orlandi E, Rossi C, Perino A, et al. Simplified first-trimester fetal cardiac screening (four chamber view and ventricular outflow tracts) in a low-risk population. Prenat Diagn. 2014;34(6):558–563. doi: 10.1002/pd.4348
- Karim JN, Bradburn E, Roberts N, Papageorghiou AT. First-trimester ultrasound detection of fetal heart anomalies: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2022;59(1):11–25. doi: 10.1002/uog.23740
- International Society of Ultrasound in Obstetrics and Gynecology; Bilardo CM, Chaoui R, et al. ISUOG practice guidelines (updated): performance of 11–14-week ultrasound scan. Ultrasound Obstet Gynecol. 2023;61(1):127–143. doi: 10.1002/uog.26106
- AIUM practice parameter for the performance of detailed diagnostic obstetric ultrasound examinations between 12 weeks 0 days and 13 weeks 6 days. J Ultrasound Med. 2021;40(5):E1–E16. doi: 10.1002/jum.15477
- Hernandez-Andrade E, Valentini B, Gerulewicz D. Practical evaluation of the fetal cardiac function. Clin Obstet Gynecol. 2024;67(4):753–764. doi: 10.1097/GRF.0000000000000899
- Ronai C, Kim A, Dukhovny S, et al. Prenatal congenital heart disease-it takes a multidisciplinary village. Pediatr Cardiol. 2023;44(5):1050–1056. doi: 10.1007/s00246-023-03161-6
- Leon RL, Levy PT, Hu J, et al. Practice variations for fetal and neonatal congenital heart disease within the children’s hospitals neonatal consortium. Pediatr Res. 2023;93(6):1728–1735. doi: 10.1038/s41390-022-02314-2
- Lowenstein S, Macauley R, Perko K, Ronai C. Provider perspective on the role of palliative care in hypoplastic left heart syndrome. Cardiol Young. 2020;30(3):377–382. doi: 10.1017/S1047951120000128
- Hancock HS, Pituch K, Uzark K, et al. A randomised trial of early palliative care for maternal stress in infants prenatally diagnosed with single-ventricle heart disease. Cardiol Young. 2018;28(4):561–570. doi: 10.1017/S1047951117002761
- Sethi N, Miller S, Hill KD. Prenatal diagnosis, management, and treatment of fetal cardiac disease. Neoreviews. 2023;24(5):e285–e299. doi: 10.1542/neo.24-5-e285
- Wilkins-Haug LE, Benson CB, Tworetzky W, et al. In-utero intervention for hypoplastic left heart syndrome — a perinatologist’s perspective. Ultrasound Obstet Gynecol. 2005;26(5):481–486. doi: 10.1002/uog.2595
- Pinto NM, Morris SA, Moon-Grady AJ, Donofrio MT. Prenatal cardiac care: goals, priorities & gaps in knowledge in fetal cardiovascular disease: perspectives of the Fetal Heart Society. Prog Pediatr Cardiol. 2020;59:101312. doi: 10.1016/j.ppedcard.2020.101312
- Moon-Grady AJ, Baschat A, Cass D, et al. Fetal treatment 2017: The evolution of fetal therapy centers — a joint opinion from the International fetal medicine and surgical society (IFMSS) and the North American fetal therapy network (NAFTNet). Fetal Diagn Ther. 2017;42(4):241–248. doi: 10.1159/000475929
- Allan L, Dangel J, Fesslova V, et al. Recommendations for the practice of fetal cardiology in Europe. Cardiol Young. 2004;14(1):109–14. doi: 10.1017/s1047951104001234
- Wautlet CK, Kops SA, Silveira LJ, et al. Maternal-fetal comorbidities and obstetrical outcomes of fetal single ventricle cardiac defects: 10 years’ experience with a multidisciplinary management protocol at a single center. Prenat Diagn. 2024;44(6-7):783–795. doi: 10.1002/pd.6591
- Afshar Y, Hogan WJ, Conturie C, et al. Multi-institutional practice-patterns in fetal congenital heart disease following implementation of a standardized clinical assessment and management plan. J Am Heart Assoc. 2021;10(15):e021598. doi: 10.1161/JAHA.121.021598
- Udine M, Donofrio MT. The role of the neonatologist in fetuses diagnosed with congenital heart disease. Neoreviews. 2023;24(9):e553–e568. doi: 10.1542/neo.24-9-e553
- Donofrio MT, Moon-Grady AJ, Hornberger LK, et al. Diagnosis and treatment of fetal cardiac disease: a scientific statement from the American Heart Association. Circulation. 2014;129(21):2183–2242. doi: 10.1161/01.cir.0000437597.44550.5d
- Williams IA, Shaw R, Kleinman CS, et al. Parental understanding of neonatal congenital heart disease. Pediatr Cardiol. 2008;29(6):1059–1065. doi: 10.1007/s00246-008-9254-8
- Kovacevic A, Simmelbauer A, Starystach S, et al. Assessment of needs for counseling after prenatal diagnosis of congenital heart disease — a multidisciplinary approach. Klin Padiatr. 2018;230(5):251–256. doi: 10.1055/a-0633-3331
- Kovacevic A, Simmelbauer A, Starystach S, et al. Counseling for prenatal congenital heart disease — recommendations based on empirical assessment of counseling success. Front Pediatr. 2020;8:26. doi: 10.3389/fped.2020.00026
- Bratt EL, Järvholm S, Ekman-Joelsson BM, et al. Parent’s experiences of counselling and their need for support following a prenatal diagnosis of congenital heart disease — a qualitative study in a Swedish context. BMC Pregnancy Childbirth. 2015;15:171. doi: 10.1186/s12884-015-0610-4
- Kovacevic A, Elsässer M, Fluhr H, et al. Counseling for fetal heart disease-current standards and best practice. Transl Pediatr. 2021;10(8):2225–2234. doi: 10.21037/tp-20-181
- Arya B, Glickstein JS, Levasseur SM, Williams IA. Parents of children with congenital heart disease prefer more information than cardiologists provide. Congenit Heart Dis. 2013;8(1):78–85. doi: 10.1111/j.1747-0803.2012.00706.x
- Galliotto F, Veronese P, Cerutti A, et al. Enhancing parental understanding of congenital heart disease through personalized prenatal counseling with 3D printed hearts. Prenat Diagn. 2024;44(6-7):725–732. doi: 10.1002/pd.6583
- Marella NT, Gil AM, Fan W, et al. 3D-printed cardiac models for fetal counseling: a pilot study and novel approach to improve communication. Pediatr Cardiol. 2023;44(8):1800–1807. doi: 10.1007/s00246-023-03177-y
- Martens AM, Lim CC, Kelly M, et al. Evaluating how physician attitudes may affect practice in fetal cardiac counseling. Pediatr Cardiol. 2024;45(7):1550–1558. doi: 10.1007/s00246-023-03210-0
- Mutti G, Ait Ali L, Marotta M, et al. Psychological impact of a prenatal diagnosis of congenital heart disease on parents: is it time for tailored psychological support? J Cardiovasc Dev Dis. 2024;11(1):31. doi: 10.3390/jcdd11010031
- Sklansky M, Tang A, Levy D, et al. Maternal psychological impact of fetal echocardiography. J Am Soc Echocardiogr. 2002;15(2):159–166. doi: 10.1067/mje.2002.116310
- Erbas GS, Herrmann-Lingen C, Ostermayer E, et al. Anxiety and depression levels in parents after counselling for fetal heart disease. J Clin Med. 2023;12(1):394. doi: 10.3390/jcm12010394
- Dunkel Schetter C, Tanner L. Anxiety, depression and stress in pregnancy: implications for mothers, children, research, and practice. Curr Opin Psychiatry. 2012;25(2):141–148. doi: 10.1097/YCO.0b013e3283503680
- Houlihan TH, Combs J, Smith E, et al. Parental impressions and perspectives of efficacy in prenatal counseling for single ventricle congenital heart disease. Pediatr Cardiol. 2024;45(3):605–613. doi: 10.1007/s00246-023-03355-y
- Harris KW, Hammack-Aviran CM, Brelsford KM, et al. Mapping parents’ journey following prenatal diagnosis of CHD: a qualitative study. Cardiol Young. 2023;33(8):1387–1395. doi: 10.1017/S1047951122002505
- Reddy RK, McVadon DH, Zyblewski SC, et al. Prematurity and congenital heart disease: a contemporary review. Neoreviews. 2022;23(7):472–485. doi: 10.1542/neo.23-7-e472
- Costello JM, Pasquali SK, Jacobs JP, et al. Gestational age at birth and outcomes after neonatal cardiac surgery: an analysis of the Society of thoracic surgeons congenital heart surgery database. circulation. 2014;129(24):2511–2517. doi: 10.1161/CIRCULATIONAHA.113.005864
- Cnota JF, Gupta R, Michelfelder EC, Ittenbach RF. Congenital heart disease infant death rates decrease as gestational age advances from 34 to 40 weeks. J Pediatr. 2011;159(5):761–765. doi: 10.1016/j.jpeds.2011.04.020
- Peyvandi S, Nguyen TA, Almeida-Jones M, et al. Timing and mode of delivery in prenatally diagnosed congenital heart disease — an analysis of practices within the university of California fetal consortium (UCfC). Pediatr Cardiol. 2017;38(3):588–595. doi: 10.1007/s00246-016-1552-y
- Divanovic A, Bowers K, Michelfelder E, et al. Intrauterine fetal demise after prenatal diagnosis of congenital heart disease: assessment of risk. Prenat Diagn. 2016;36(2):142–147. doi: 10.1002/pd.4755
- Trento LU, Pruetz JD, Chang RK, et al. Prenatal diagnosis of congenital heart disease: impact of mode of delivery on neonatal outcome. Prenat Diagn. 2012;32(13):1250–1255. doi: 10.1002/pd.3991
- Peterson AL, Quartermain MD, Ades A, et al. Impact of mode of delivery on markers of perinatal hemodynamics in infants with hypoplastic left heart syndrome. J Pediatr. 2011;159(1):64–69. doi: 10.1016/j.jpeds.2011.01.004
- Adams AD, Aggarwal N, Fries MH, et al. Neonatal and maternal outcomes of pregnancies with a fetal diagnosis of congenital heart disease using a standardized delivery room management protocol. J Perinatol. 2020;40(2):316–323. doi: 10.1038/s41372-019-0528-1
- Sanapo L, Moon-Grady AJ, Donofrio MT. Perinatal and delivery management of infants with congenital heart disease. Clin Perinatol. 2016;43(1):55–71. doi: 10.1016/j.clp.2015.11.004
- Donofrio MT, Levy RJ, Schuette JJ, et al. Specialized delivery room planning for fetuses with critical congenital heart disease. Am J Cardiol. 2013;111(5):737–747. doi: 10.1016/j.amjcard.2012.11.029
- Morris SA, Ethen MK, Penny DJ, et al. Prenatal diagnosis, birth location, surgical center, and neonatal mortality in infants with hypoplastic left heart syndrome. Circulation. 2014;129(3):285–292. doi: 10.1161/CIRCULATIONAHA.113.003711
- Bennett TD, Klein MB, Sorensen MD, et al. Influence of birth hospital on outcomes of ductal-dependent cardiac lesions. Pediatrics. 2010;126(6):1156–1164. doi: 10.1542/peds.2009-2829
- Tseng SY, Anderson S, DeFranco E, et al. Severe maternal morbidity in pregnancies complicated by fetal congenital heart disease. JACC Adv. 2022;1(4):100125. doi: 10.1016/j.jacadv.2022.100125
- Fite EL, Rivera BK, McNabb R, et al. Umbilical cord clamping among infants with a prenatal diagnosis of congenital heart disease. Semin Perinatol. 2023;47(4):151747. doi: 10.1016/j.semperi.2023.151747
- Backes CH, Huang H, Cua CL, et al. Early versus delayed umbilical cord clamping in infants with congenital heart disease: a pilot, randomized, controlled trial. J Perinatol. 2015;35(10):826–831. doi: 10.1038/jp.2015.89
- Skorobogachev RV, Belekhova DA, Belova EA, et al. Indications and methods for intrauterine intervention in the surgical correction of cardiac malformations. Russian Journal of Operative Surgery and Clinical Anatomy. 2019;3(2):2533. doi: 10.17116/operhirurg2019302125 EDN: KUOYDV
- Kang SL, Jaeggi E, Ryan G, Chaturvedi RR. An overview of contemporary outcomes in fetal cardiac intervention: a case for high-volume superspecialization? Pediatr Cardiol. 2020;41(3):479–485. doi: 10.1007/s00246-020-02294-2
- Perez MT, Bucholz E, Asimacopoulos E, et al. Impact of maternal social vulnerability and timing of prenatal care on outcome of prenatally detected congenital heart disease. Ultrasound Obstet Gynecol. 2022;60(3):346–358. doi: 10.1002/uog.24863
- Davey B, Sinha R, Lee JH, et al. Social determinants of health and outcomes for children and adults with congenital heart disease: a systematic review. Pediatr Res. 2021;89(2):275–294. doi: 10.1038/s41390-020-01196-6
- Kaltman JR, Burns KM, Pearson GD, et al. Disparities in congenital heart disease mortality based on proximity to a specialized pediatric cardiac center. Circulation. 2020;141(12):1034–1036. doi: 10.1161/CIRCULATIONAHA.119.043392
- Krishnan A, Jacobs MB, Morris SA, et al. Fetal heart society. impact of socioeconomic status, race and ethnicity, and geography on prenatal detection of hypoplastic left heart syndrome and transposition of the great arteries. Circulation. 2021;143(21):2049–2060. doi: 10.1161/CIRCULATIONAHA.120.053062
- Morris AA, Masoudi FA, Abdullah AR, et al. 2024 ACC/AHA Key data elements and definitions for social determinants of health in cardiology: a report of the Аmerican college of cardiology/american heart association joint committee on clinical data standards. Circ Cardiovasc Qual Outcomes. 2024;17(10):e000133. doi: 10.1161/HCQ.0000000000000133
