Эпигенетические механизмы развития преэклампсии: роль плазменных микроРНК

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Введение. Несмотря на сохранение значимости преэклампсии (ПЭ) в структуре основных причин материнской заболеваемости и смертности, остается неясной этиология данного осложнения беременности, много пробелов в вопросах патофизиологии, соответственно по-прежнему не разработаны высокоэффективные методы прогнозирования, профилактики и лечения. В последние годы большой интерес вызывают перспективы использования молекул микроРНК, которые эпигенетически контролируют экспрессию генов-мишеней на посттранскрипционном уровне и имеют ключевое значение в пролиферации, дифференцировке, инвазии, миграции, апоптозе клеток трофобласта, регуляции ангиогенеза, иммунного ответа и других процессов во время беременности.

Цель. Изучение эпигенетических механизмов развития ПЭ на основании оценки экспрессии патогенетически значимых микроРНК в плазме крови женщин.

Материалы и методы. В исследование включены 62 пациентки, которых разделили на основную (42 беременные с ПЭ) и контрольную (20 здоровых женщин с неосложнённым течением беременности, родов и послеродового периода) группы. Всем пациенткам проводили общеклиническое, лабораторное и инструментальное обследование. Уровень экспрессии 15 микроРНК в плазме крови оценивали с помощью количественной полимеразной цепной реакции в режиме реального времени. Для оценки влияния дифференциально экспрессируемых микроРНК на функционирование сигнальных путей использовали программное обеспечение DIANA miRPath v.3.0. Статистическую обработку данных проводили с использованием лицензионного пакета программ Statistica 6.0.

Результаты. У женщин с ПЭ выявлены разнонаправленные изменения экспрессии 13 из 15 плазменных микроРНК по сравнению с контрольной группой, однако статистически значимо было снижение уровней экспрессии 8 микроРНК: hsa-miR-146a-5p (р=0,011), hsa-miR-181a-5p (р=0,015), hsa-miR-210-3p (р=0,031), hsa-miR-517a-3p (р=0,004), hsa-miR-517с-3p (р=0,007), hsa-miR-574-3p (р=0,048), hsa-miR-574-5p (р=0,003), hsa-miR-1304-5p (р=0,001). В подгруппе беременных, у которых ПЭ протекала с симптомами задержки роста плода, отмечено значимое снижение экспрессии молекул hsa-miR-20a-5p (FC=0,39; р=0,049) и hsa-miR-143-3p (FC=0,71, р=0,05) по сравнению с подгруппой без задержки роста плода. Не выявлено значимых различий в уровне экспрессии анализируемых микроРНК между подгруппами с умеренной и тяжёлой ПЭ, ранней и поздней ПЭ. Функциональная оценка дифференциально экспрессируемых микроРНК у женщин с ПЭ с учётом идентификации их потенциальных генов-мишеней показала наличие дисрегуляции более 40 сигнальных путей и биологических процессов, в которые вовлечены указанные молекулы.

Заключение. Развитие ПЭ сопровождается значимыми эпигенетическими изменениями, при которых изменяется профиль экспрессии микроРНК, ассоциированных с сердечно-сосудистыми и цереброваскулярными заболеваниями, а также плацентарными нарушениями. Выявленные дифференциально экспрессируемые микроРНК могут быть потенциальными диагностическими маркерами ПЭ.

Об авторах

Наталья Александровна Никитина

Первый Московский государственный медицинский университет им. И.М. Сеченова

Email: natnikitina@list.ru
ORCID iD: 0000-0001-8659-9963

д-р мед. наук, профессор

Россия, Москва

Ираида Степановна Сидорова

Первый Московский государственный медицинский университет им. И.М. Сеченова

Email: sidorovais@yandex.ru
ORCID iD: 0000-0003-2209-8662

академик РАН, д-р мед. наук, профессор

Россия, Москва

Мария Павловна Райгородская

Московский научно-исследовательский онкологический институт им. П.А. Герцена — филиал Национального медицинского исследовательского центра радиологии

Email: maria.raygorodskaya@gmail.com
ORCID iD: 0000-0003-0527-7773

канд. биол. наук

Россия, Москва

Екатерина Андреевна Морозова

Первый Московский государственный медицинский университет им. И.М. Сеченова

Автор, ответственный за переписку.
Email: drstrelnikova@mail.ru
ORCID iD: 0000-0002-1670-9044

аспирант

Россия, Москва

Сергей Анатольевич Тимофеев

Первый Московский государственный медицинский университет им. И.М. Сеченова

Email: satimofeev30@gmail.com
ORCID iD: 0000-0001-7380-9255

ассистент кафедры

Россия, Москва

Михаил Борисович Агеев

Первый Московский государственный медицинский университет им. И.М. Сеченова

Email: mikhaageev@ua.ru
ORCID iD: 0000-0002-6603-804X

канд. мед. наук, ассистент кафедры

Россия, Москва

Нигяр Ильхамовна Амирасланова

Первый Московский государственный медицинский университет им. И.М. Сеченова

Email: amiraslanova00@mail.ru
ORCID iD: 0009-0008-7446-3995

ординатор

Россия, Москва

Список литературы

  1. Jung E., Romero R., Yeo L., et al. The etiology of preeclampsia // Am J Obstet Gynecol. 2022. Vol. 226, N 2S. P. S844–S866. doi: 10.1016/j.ajog.2021.11.1356
  2. Khan K.S., Wojdyla D., Say L., et al. WHO analysis of causes of maternal death: a systematic review // Lancet. 2006. Vol. 367, N 9516. P. 1066–1074. doi: 10.1016/S0140-6736(06)68397-9
  3. Steegers E.A., von Dadelszen P., Duvekot J.J., Pijnenborg R. Pre-eclampsia // Lancet. 2010. Vol. 376, N 9741. P. 631–644. doi: 10.1016/S0140-6736(10)60279-6
  4. World Health Organization. WHO recommendations for prevention and treatment of pre-eclampsia and eclampsia. Geneva, 2011.
  5. Roberts J.M., Rich-Edwards J.W., McElrath T.F., et al. Global Pregnancy Collaboration. Subtypes of Preeclampsia: Recognition and Determining Clinical Usefulness // Hypertension. 2021. Vol. 77, N 5. P. 1430–1441. doi: 10.1161/HYPERTENSIONAHA.120.14781
  6. Roberts J.M., Hubel C.A. The two stage model of preeclampsia: variations on the theme // Placenta. 2009. Vol. 30. Suppl. A. P. S32–37. doi: 10.1016/j.placenta.2008.11.009
  7. Fitzgerald J.S., Germeyer A., Huppertz B., et al. Governing the invasive trophoblast: current aspects on intra- and extracellular regulation // Am J Reprod Immunol. 2010. Vol. 63, N 6. P. 492–505. doi: 10.1111/j.1600-0897.2010.00824.x
  8. James J.L., Saghian R., Perwick R., Clark A.R. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling // Hum Reprod. 2018. Vol. 33, N 8. P. 1430–1441. doi: 10.1093/ humrep/dey225
  9. Allerkamp H.H., Clark A.R., Lee T.C., et al. Something old, something new: digital quantification of uterine vascular remodelling and trophoblast plugging in historical collections provides new insight into adaptation of the uteroplacental circulation // Hum Reprod. 2021. Vol. 36, N 3. P. 571–586. doi: 10.1093/humrep/deaa303
  10. Staff A.C., Fjeldstad H.E., Fosheim I.K., et al. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia // Am J Obstet Gynecol. 2022. Vol. 226, N 2S. P. S895–S906. doi: 10.1016/j.ajog.2020.09.026
  11. Сидорова И.С. Решённые вопросы и нерешённые проблемы преэклампсии в России (редакционная статья) // Российский вестник акушера-гинеколога. 2015. Т. 15, № 2. С. 4–9. doi: 10.17116/rosakush20151524-9
  12. Phipps E., Prasanna D., Brima W., Jim B. Preeclampsia: Updates in Pathogenesis, Definitions, and Guidelines // Clin J Am Soc Nephrol. 2016. Vol. 11, N 6. P. 1102–1113. doi: 10.2215/CJN.12081115
  13. Roberts J.M., Bell M.J. If we know so much about preeclampsia. why haven’t we cured the disease? // J. Reprod. Immunol. 2013. Vol. 99, N 1–2. P. 1–9. doi: 10.1016/j.jri.2013.05.003
  14. Poirier C., Desgagné V., Guérin R., Bouchard L. MicroRNAs in Pregnancy and Gestational Diabetes Mellitus: Emerging Role in Maternal Metabolic Regulation // Curr Diab Rep. 2017. Vol. 17, N 5. P. 35. doi: 10.1007/s11892-017-0856-5
  15. Enquobahrie D.A., Abetew D.F., Sorensen T.K., et al. Placental microRNA expression in pregnancies complicated by preeclampsia // Am J Obstet Gynecol. 2011. Vol. 204, N 2. P. 178.e12–178.e21.78E21. doi: 10.1016/j.ajog.2010.09.004
  16. Luo S., Cao N., Tang Y., Gu W. Identification of key microRNAs and genes in preeclampsia by bioinformatics analysis // PLoS One. 2017. Vol. 12, N 6. P. e0178549. doi: 10.1371/journal.pone.0178549
  17. Wu L., Zhou H., Lin H., et al. Circulating microRNAs are elevated in plasma from severe preeclamptic pregnancies // Reproduction. 2012. Vol. 143, N 3. P. 389–397. doi: 10.1530/REP-11-0304
  18. Matsubara K., Matsubara Y., Uchikura Y., Sugiyama T. Pathophysiology of Preeclampsia: The Role of Exosomes // Int J Mol Sci. 2021. Vol. 22, N 5. P. 2572. doi: 10.3390/ijms22052572
  19. Lv Y., Lu C., Ji X., et al. Roles of microRNAs in preeclampsia // J Cell Physiol. 2019. Vol. 234, N 2. P. 1052–1061. doi: 10.1002/jcp.27291
  20. Ходжаева З.С., Шмаков Р.Г., Савельева Г.М., и др. Преэклампсия. Эклампсия. Отёки, протеинурия и гипертензивные расстройства во время беременности, в родах и послеродовом периоде. Клинические рекомендации. Министерство здравоохранения РФ; 2021.
  21. Wang Y., Zhang Y., Wang H., et al. Aberrantly up-regulated miR-20a in pre-eclampsic placenta compromised the proliferative and invasive behaviors of trophoblast cells by targeting forkhead box protein A1 // Int J Biol Sci. 2014. Vol. 10, N 9. P. 973–982. doi: 10.7150/ijbs.9088
  22. Luizon M.R., Conceição I.M.C.A., Viana-Mattioli S., et al. Circulating MicroRNAs in the Second Trimester from Pregnant Women who Subsequently Developed Preeclampsia: Potential Candidates as Predictive Biomarkers and Pathway Analysis for Target Genes of miR-204-5p // Front. Physiol. 2021. Vol. 12. P. 678184. doi: 10.3389/fphys.2021.678184
  23. Peng P., Song H., Xie C., et al. miR-146a-5p-mediated suppression on trophoblast cell progression and epithelial-mesenchymal transition in preeclampsia // Biol Res. 2021. Vol. 54, N 1. P. 30. doi: 10.1186/s40659-021-00351-5
  24. Huang X., Wu L., Zhang G., et al. Elevated MicroRNA-181a-5p Contributes to Trophoblast Dysfunction and Preeclampsia // Reprod Sci. 2019. Vol. 26, N 8. P. 1121–1129. doi: 10.1177/1933719118808916
  25. Kim C., Ye Z., Weyand C.M., Goronzy J.J. miR-181a-regulated pathways in T-cell differentiation and aging // Immun Ageing. 2021. Vol. 18, N 1. P. 28. doi: 10.1186/s12979-021-00240-1
  26. Nejad R.M.A., Saeidi K., Gharbi S., et al. Quantification of circulating miR-517c-3p and miR-210-3p levels in preeclampsia // Pregnancy Hypertens. 2019. Vol. 16. P. 75–78. doi: 10.1016/j.preghy.2019.03.004
  27. Munaut C., Tebache L., Blacher S., et al. Dysregulated circulating miRNAs in preeclampsia // Biomed Rep. 2016. Vol. 5, N 6. P. 686–692. doi: 10.3892/br.2016.779
  28. Jaszczuk I., Koczkodaj D., Kondracka A., et al. The role of miRNA-210 in pre-eclampsia development // Ann Med. 2022. Vol. 54, N 1. P. 1350–1356. doi: 10.1080/07853890.2022.2071459
  29. Anton L., DeVine A., Polyak E., et al. HIF-1α Stabilization Increases miR-210 Eliciting First Trimester Extravillous Trophoblast Mitochondrial Dysfunction // Front Physiol. 2019. Vol. 10. P. 699. doi: 10.3389/fphys.2019.00699
  30. Zhong Y., Zhu F., Ding Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies // Exp Ther Med. 2019. Vol. 18, N 1. P. 826–832. doi: 10.3892/etm.2019.7637
  31. Liao G., Cheng D., Li J., Hu S. Clinical significance of microRNA-320a and insulin-like growth factor-1 receptor in early-onset preeclampsia patients // Eur J Obstet Gynecol Reprod Biol. 2021. Vol. 263. P. 164–170. doi: 10.1016/j.ejogrb.2021.06.032
  32. Akgör U., Ayaz L., Çayan F. Expression levels of maternal plasma microRNAs in preeclamptic pregnancies // J Obstet Gynaecol. 2021. Vol. 41, N 6. P. 910–914. doi: 10.1080/01443615.2020.1820465
  33. Ren Y., Xu Y., Wang Y., et al. Regulation of miR-375 and Sonic hedgehog on vascular endothelial growth factor in preeclampsia rats and its effect on trophoblast cells // Biosci Rep. Published online May 15, 2020. doi: 10.1042/BSR20200613
  34. Mayor-Lynn K., Toloubeydokhti T., Cruz A.C., Chegini N. Expression Profile of MicroRNAs and mRNAs in Human Placentas from Pregnancies Complicated by Preeclampsia and Preterm Labor // Reproductive Sciences. 2011. Vol. 18, N 1. P. 46–56. doi: 10.1177/1933719110374115
  35. Nejad R.M.A., Saeidi K., Gharbi S., et al. Quantification of circulating miR-517c-3p and miR-210-3p levels in preeclampsia // Pregnancy Hypertens. 2019. Vol. 16. P. 75–78. doi: 10.1016/j.preghy.2019.03.004
  36. Hromadnikova I., Kotlabova K., Krofta L. Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction // Biomedicines. 2022. Vol. 10, N 2. P. 256. doi: 10.3390/ biomedicines10020256
  37. Munaut C., Tebache L., Blacher S., et al. Dysregulated circulating miRNAs in preeclampsia // Biomed Rep. 2016. Vol. 5, N 6. P. 686–692. doi: 10.3892/br.2016.779
  38. Lip S.V., Boekschoten M.V., Hooiveld G.J., et al. Early-onset preeclampsia, plasma microRNAs, and endothelial cell function // Am J Obstet Gynecol. 2020. Vol. 222, N 5. P. 497.e1–497.e12. doi: 10.1016/j.ajog.2019.11.1286
  39. Zhong Y., Zhu F., Ding Y. Differential microRNA expression profile in the plasma of preeclampsia and normal pregnancies // Exp Ther Med. 2019. Vol. 18, N 1. P. 826–832. doi: 10.3892/etm.2019.7637
  40. Ali Z., Zargham U., Zaki S., et al. Elevated expression of miR-210-5p & miR-195-5p deregulates angiogenesis in preeclampsia // Baltica. 2020. Vol. 33, N 5. Paper ID 30dW0.
  41. Vlachos I.S., Zagganas K., Paraskevopoulou M.D., et al. DIANA-miRPath v3.0: deciphering microRNA function with experimental support // Nucleic Acids Res. 2015. Vol. 43, N W1. P. W460–W466. doi: 10.1093/nar/gkv403
  42. Bao S., Zhou T., Yan C., et al. A blood-based miRNA signature for early non-invasive diagnosis of preeclampsia // BMC Med. 2022. Vol. 20, N 1. P. 303. doi: 10.1186/s12916-022-02495-x
  43. Vaiman D. Genes, epigenetics and miRNA regulation in the placenta // Placenta. 2017. Vol. 52. P. 127–133. doi: 10.1016/j.placenta.2016.12.026
  44. DaSilva-Arnold S.C., Zamudio S., Al-Khan A., et al. Human trophoblast epithelial-mesenchymal transition in abnormally invasive placenta // Biol Reprod. 2018. Vol. 99, N 2. P. 409–421. doi: 10.1093/biolre/ioy042
  45. Jauniaux E., Watson A., Burton G. Evaluation of respiratory gases and acid-base gradients in human fetal fluids and uteroplacental tissue between 7 and 16 weeks’ gestation // Am J Obstet Gynecol. 2001. Vol. 184, N 5. P. 998–1003. doi: 10.1067/mob.2001.111935
  46. Ura B., Feriotto G., Monasta L., et al. Potential role of circulating microRNAs as early markers of preeclampsia // Taiwan J Obstet Gynecol. 2014. Vol. 53, N 2. P. 232–234. doi: 10.1016/j.tjog.2014.03.001
  47. Anton L., Olarerin-George A.O., Hogenesch J.B., Elovitz M.A. Placental expression of miR-517a/b and miR-517c contributes to trophoblast dysfunction and preeclampsia // PLoS One. 2015. Vol. 10. N 3. P. e0122707. doi: 10.1371/journal.pone.0122707
  48. Burton G.J., Yung H.-W., Cindrova-Davies T., Charnock-Jones D.S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia // Placenta. 2009. Vol. 30, Suppl A(Suppl). P. S43–S48. doi: 10.1016/j.placenta.2008.11.003
  49. Carbonell T., Gomes A.V. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury // Redox Biol. 202. Vol. 36. P. 101607. doi: 10.1016/j.redox.2020.101607
  50. Carrella S., Di Guida M., Brillante S., et al. miR-181a/b downregulation: a mutation-independent therapeutic approach for inherited retinal diseases // EMBO Mol Med. 2022. Vol. 14, N 11. P. e15941. doi: 10.15252/emmm.202215941
  51. Hromadnikova I., Kotlabova K., Krofta L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers // Biomedicines. 2022. Vol. 10, N 3. P. 718. doi: 10.3390/biomedicines10030718
  52. Shi L., Song Z., Li Y., et al. MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis // Am J Transplant. 2023. Vol. 23, N 1. P. 11–25. doi: 10.1016/j.ajt.2022.09.003
  53. Salomon C., Torres M.J., Kobayashi M., et al. A gestational profile of placental exosomes in maternal plasma and their effects on endothelial cell migration // PLoS One. 2014. Vol. 9, N 6. P. e98667. doi: 10.1371/journal.pone.0098667

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».