Analysis of pathogenetic manifestation of decompensated intestinal dysbacteriosis in cats

Cover Page

Cite item

Abstract

Despite the creation of more and more new generations of antibacterial agents, the correction of intestinal dysbiosis in animals currently remains one of the most complex and urgent problems in clinical veterinary medicine. The article presents an analysis of the pathogenetic manifestation (microbial background, hematological analytes) in decompensated intestinal dysbacteriosis in domestic cats in the dynamics of its correction. The aim of the study was to study the comparative effectiveness of various pharmacotherapy regimens for decompensated intestinal dysbacteriosis in cats. The data shows that when correcting decompensated intestinal dysbacteriosis in domestic cats, the most rational treatment regimen is the complex use of Lactobifadol probiotic (contains at least 1.0 × 106 CFU/g of lactic acid bacteria Lactobacillus acidophilus LG1-DEP-VGIKI and 8.0 × 107 CFU/g of bifidobacteria Bifidobacterium adolescentis B-1-DEP-VGNKI), Vetelact prebiotic (contains lactulose - not less than 50 %), Azoksivet immunomodulator (contains 1.5 mg of azoximer bromide in 1 ml), as well as infusion therapy (intravenous drip injection of 10 ml/kg of 0.9 % sodium chloride solution; 10 ml/kg of 5 % glucose solution; 5 ml/kg of rheosorbelact and 2.5 ml/kg of refortan). This was confirmed by the results of pathogenetic picture (analysis of the microbial background and individual hematological analytes), in the dynamics of pharmacotherapy, namely before the start of correction, as well as on days 7 and 14. The improvement of diagnostic approaches and methods for correcting the most severe degree of intestinal dysbacteriosis (the stage of decompensation) creates prerequisites for the future study of dysbiotic disorders of the intestinal tract in other animal species, considering the severity of its manifestation.

About the authors

Evgeny V. Kulikov

RUDN University

Email: eugeny1978@list.ru
ORCID iD: 0000-0001-6936-2163

Candidate of Biological Sciences, Associate Professor, Agrarian and Technological Institute

6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

Nikolai V. Babichev

RUDN University

Email: babichev-nv@rudn.ru
ORCID iD: 0000-0001-8444-8600

Candidate of Biological Sciences, Associate Professor, Agrarian and Technological Institute

6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

Alena I. Telezhenkova

RUDN University

Email: telezhenkova-ai@rudn.ru

assistant, Department of Veterinary Medicine, Agrarian and Technological Institute

6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

Nikolai S. Bugrov

RUDN University

Email: bugr24-8@mail.ru
ORCID iD: 0000-0002-4116-0620

PhD student, Department of Veterinary Medicine, Agrarian and Technological Institute

6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

Pavel A. Rudenko

RUDN University; Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences

Author for correspondence.
Email: pavelrudenko76@yandex.ru
ORCID iD: 0000-0002-0418-9918

Doctor of Veterinary Sciences, Leading Researcher, Laboratory of Cell Surface Biochemistry of Microorganisms, Skryabin Institute of Biochemistry and Physiology of Microorganisms of the Russian Academy of Sciences Associate Professor, Department of Veterinary Medicine, Agrarian and Technological Institute, Peoples’ Friendship University of Russia (RUDN University)

5 Nauki av., Pushchino, Moscow region, 142290, Russian Federation; 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation

References

  1. Ivannikova RF, Pimenov NV, Navruzshoeva GS. Nonspecific resistance of calves against the background of antenatal use of a probiotic feed supplement. Veterinary, Zootechnics and Biotechnology. 2021;(11):64–71. (In Russ.). doi: 10.36871/vet.zoo.bio.202111009
  2. Lysko SB, Baturina OA, Naumova NB, Lescheva NA, Pleshakova VI, Kabilov MR. No-antibiotic-pectin-based treatment differently modified cloaca bacteriobiome of male and female broiler chickens. Agriculture. 2022;12(1):24. doi: 10.3390/agriculture12010024
  3. Yashin AV, Shcherbakov GG, Kovalev SP, Guseva VA, Kulyakov GV, Kluusko DA. Dysbacteriosis in animals: theoretical and applied aspects. Hippology and veterinary. 2019;(4):159–162. (In Russ.).
  4. Bugrov N, Rudenko P, Lutsay V, Gurina R, Zharov A, Khairova N, Molchanova M, Krotova E, Shopinskaya M, Bolshakova M, Popova I. Fecal microbiota analysis in cats with intestinal dysbiosis of varying severity. Pathogens. 2022;11(2):234. doi: 10.3390/pathogens11020234
  5. Naumova NB, Alikina TY, Zolotova NS, Konev AV, Pleshakova VI, Lescheva NA, Kabilov MR. Bacillus-based probiotic treatment modified bacteriobiome diversity in duck feces. Agriculture. 2021;11(5):406. doi: 10.3390/agriculture11050406
  6. Wosinska L, Cotter PD, O’Sullivan O, Guinane C. The potential impact of probiotics on the gut microbiome of athletes. Nutrients. 2019;11(10):2270. doi: 10.3390/nu11102270
  7. Rudenko PA. The intensity of lipid peroxidation and the activity of the antioxidant system in cats with purulent-inflammatory processes. Veterinary medicine. 2016;(10):45–48. (In Russ.).
  8. Honneffer JB, Minamoto Y, Suchodolski JS. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs. World J Gastroenterol. 2014;20(44):16489–16497. doi: 10.3748/wjg.v20.i44.16489
  9. Ivannikova RF, Pimenov NV. Assessment of the impact on the biological status of young sheep of a symbiotic feed additive. Veterinary, Zootechnics and Biotechnology. 2021;(5):57–62. (In Russ.) doi: 10.36871/vet.zoo.bio.202105008
  10. Marsilio S, Pilla R, Sarawichitr B, Chow B, Hill SL, Ackermann MR, Estep JS, Lidbury JA, Steiner JM, Suchodolski JS. Characterization of the fecal microbiome in cats with inflammatory bowel disease or alimentary small cell lymphoma. Scientific Reports. 2019;9(1):19208. doi: 10.1038/s41598-019-55691-w
  11. Yashin AV, Prusakov AV. Features of the state of the microcirculatory bed and membrane digestion in newborn calves with dyspepsia. International Bulletin of Veterinary Medicine. 2021;(2):155–160. (In Russ.). doi: 10.17238/issn2072-2419.2021.2.155
  12. Vatnikov Y, Shabunin S, Kulikov E, Karamyan A, Murylev V, Elizarov P, et al. The efficiency of therapy the piglets gastroenteritis with combination of Enrofloxacin and phytosorbent Hypericum perforatum L. International Journal of Pharmaceutical Research. 2020;12(Suppl.2):3064–3073. doi: 10.31838/ijpr/2020.sp2.373
  13. Pavlova AV, Pimenov NV. Antibiotic resistance of bacterial pathogens isolated from animals in the conditions of veterinary clinics in Lugansk. Veterinary, Zootechnics and Biotechnology. 2020;(2):38–43. (In Russ.). doi: 10.26155/vet.zoo.bio.202002006
  14. Alessandri G, Argentini C, Milani C, Turroni F, Ossiprandi CM, van Sinderen D, Ventura M. Catching a glimpse of the bacterial gut community of companion animals: a canine and feline perspective. Microb Biotechnol. 2020;13(6):1708–1732. doi: 10.1111/1751-7915.13656
  15. Sepp AL, Yashin AV, Radnatarov VD. The use of the probiotic strain Enterococcus faecium L in gastroenteritis in piglets. Vestnik of Buryat state academy of agriculture named after V. Philippov. 2020;(3):74–80. (In Russ.). doi: 10.34655/bgsha.2020.60.3.011
  16. Vatnikov YA, Rudenko PA, Bugrov NS, Rudenko AA. Evaluation of the effectiveness of therapy for compensated intestinal dysbiosis in cats. Agrarian science. 2022;(1):24–29. (In Russ.). doi: 10.32634/0869-8155-2022-355-1-24-29
  17. Suchodolski JS. Diagnosis and interpretation of intestinal dysbiosis in dogs and cats. The Veterinary Journal. 2016;215:30–37. doi: 10.1016/j.tvjl.2016.04.011

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).