Methodical approach to assessing risks of possible yield losses during implementation of agricultural technologies

Capa

Citar

Texto integral

Resumo

The methods of risk assessment and decision-making in the management of agrotechnology were studied in order to develop a methodical approach to assessing the risks of possible yield losses in case of deviations from the project parameters in the implementation of agrotechnology. The study uses methods of analyzing information from the subject area of risk management in the management of agricultural technology. A registry of possible deviations in the design values of process parameters in the implementation of agricultural technologies has been compiled. A new approach has been developed to assess the risks of possible yield losses in the implementation of agrotechnology with deviations in process parameters from project values. Using the proposed approach will provide an automated ranking of options for decisions on the degree of risk of possible crop failure in case of deviations from the designed values, which will facilitate the transition to intelligent management of crop production.

Sobre autores

Vyacheslav Yakushev

Agrophysical Research Institute

Email: mail@agrophys.com
ORCID ID: 0000-0001-8434-5580

Doctor of Agricultural Sciences, Corresponding Member of the Russian Academy of Sciences, Head of the Laboratory for Information Support of Precision Farming

14 Grazhdansky av., St. Petersburg, Russian Federation

Valeriy Voropayev

Agrophysical Research Institute

Email: valeriy.voropaev.70@mail.ru
ORCID ID: 0000-0002-7537-4862

Candidate of Agricultural Sciences, Leading Researcher, Laboratory for Information Support of Precision Farming

14 Grazhdansky av., St. Petersburg, Russian Federation

Vladimir Lomakin

Agrophysical Research Institute

Autor responsável pela correspondência
Email: lomakinv2014@yandex.ru
ORCID ID: 0000-0003-2051-3877

Candidate of Technical Sciences, Leading Engineer, Laboratory for Information Support of Precision Farming

14 Grazhdansky av., St. Petersburg, Russian Federation

Bibliografia

  1. Kuzmenko OV. Plant growing risks: classification and methods of management. Bulletin of the Bashkir State Agrarian University. 2011;(4):95—100.
  2. Plushikov VG, Krainev NS, Dovletyarova EA, Ilyasova NI. Systematic approaches to the estimation of the losses (shortage) of the harvest of agricultural crops from the natural calamities and other unfavorable conditions of production with the insurance of sowings. RUDN Journal of Agronomy and Animal Industries. 2006;(1):4—9.
  3. Chekmarev PA, Malko AM, Govorov DA, Plushchikov VG, Zhivykh AV, Osokin IV, et al. Metodicheskie rekomendatsii po opredeleniyu pryamykh zatrat na vos-stanovlenie ob»ektov sel’skogo khozyaistva postradavshikh ot chrezvychainykh si-tuatsii prirodnogo kharaktera v agropromyshlennom komplekse (vklyuchaya LPKh) [Guidelines for determining the direct costs of restoring agricultural facilities affected by natural emergencies in the agro-industrial complex (including household plots)]. Moscow; 2019.
  4. Yakushev VV, Lomakin VS, Chasovskikh SV, Matveenko DA. Improvement of agricultural enterprise management with precision farming elements. Agrophysica. 2020;(4):46—54. doi: 10.25695/AGRPH.2020.04.08
  5. Yakushev VV. Tochnoe zemledelie — teoriya i praktika [Precision agriculture — theory and practice]. Saint petersburg: FGBNU AFI publ.; 2016.
  6. Poddubnaya LI. Risks of production activities in relation to crop production. Vestnik of Kursk state agricultural academy. 2012;(2):22—23.
  7. Yaraya TY. Classification of agricultural risks and ways to reduce them. SCI-ARTICLE.RU. 2014; (5):234
  8. Kondranov P. Management of risks of agricultural production. Mezhdunarodnyi sel’skokhozyaistvennyi zhurnal. 2009; (4):20—21.
  9. Pylianidis C, Osinga S, Athanasiadis IN. Introducing digital twins to agriculture. Computers and Electronics in Agriculture. 2021;184:105942. doi: 10.1016/j.compag.2020.105942
  10. Konev AV, Lomakin VS, Matveenko DA, Yakushev VV. The structure of of production processes in the agrotechnical decision support system. Agrophysica. 2018;(1):24—35. doi: 10.25695/AGRPH.2018.01.04
  11. Kuzmenko OV. Industrial risk management in agriculture. International Research Journal. 2014; (11—3):45—47.
  12. Reva AF, Reva VS. Matrix and diagnostic analysis of the environmental factors influence at the internal production processes of agricultural enterprises. Don Agrarian Science Bulletin. 2013;2:48—54.
  13. Tikhomirov NP, Tikhomirova TM. Risk-analiz v ekonomike [Risk analysis in economics]. Moscow: Ekonomika publ.; 2010.
  14. Treiman MG, Varygina OS. Methods for assessing and managing risks on resource-supplying enterprise (for example, PJSC «TGC-1»). Scientific Journal NRU ITMO. Series: Economics and Environmental Management. 2017;(4): 64—73. doi: 10.17586/2310-1172-2017-10-4-64-73

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição 4.0 Internacional.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).