Optimization of cultivation conditions for Lactobacillus acidophilus to produce lactic acid through molasses fermentation
- Authors: Nepomniashchii A.P.1, Zubkov I.N.1, Sorokoumov P.N.1, Sharova N.Y.1
-
Affiliations:
- All-Russian Research Institute for Food Additives, Branch of V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
- Issue: Vol 15, No 2 (2025)
- Pages: 279-285
- Section: Brief communication
- URL: https://ogarev-online.ru/2227-2925/article/view/366129
- DOI: https://doi.org/10.21285/achb.999
- EDN: https://elibrary.ru/HQIHHZ
- ID: 366129
Cite item
Full Text
Abstract
About the authors
A. P. Nepomniashchii
All-Russian Research Institute for Food Additives, Branch of V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Email: Nepomnyashiy.95@mail.ru
ORCID iD: 0000-0003-0088-2704
I. N. Zubkov
All-Russian Research Institute for Food Additives, Branch of V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Email: zub-i@bk.ru
ORCID iD: 0000-0002-6533-8139
P. N. Sorokoumov
All-Russian Research Institute for Food Additives, Branch of V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Email: sorokoumov_pavel@mail.ru
ORCID iD: 0000-0002-8767-3720
N. Yu. Sharova
All-Russian Research Institute for Food Additives, Branch of V.M. Gorbatov Federal Research Center for Food Systems, Russian Academy of Sciences
Email: natalya_sharova1@mail.ru
ORCID iD: 0000-0002-4208-9299
References
- Ayivi R.D., Gyawali R., Krastanov A., Aljaloud S.O., Worku M., Tahergorabi R., et al. Lactic acid bacteria: food safety and human health applications // Dairy. 2020. Vol. 1, no. 3. P. 202–232. doi: 10.3390/dairy1030015.
- Rajeshkumar G., Seshadri S.A., Devnani G.L., Sanjay M.R., Siengchin S., Maran J.P., et al. Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – a comprehensive review // Journal of Cleaner Production. 2021. Vol. 310. P. 127483. doi: 10.1016/j.jclepro.2021.127483.
- Juodeikiene G., Vidmantiene D., Basinskiene L., Cernauskas D., Bartkiene E., Cizeikiene D. Green metrics for sustainability of biobased lactic acid from starchy biomass vs chemical synthesis // Catalysis Today. 2015. Vol. 239. P. 11–16. doi: 10.1016/j.cattod.2014.05.039.
- Korcz E., Varga L. Exopolysaccharides from lactic acid bacteria: techno-functional application in the food industry // Trends in Food Science & Technology. 2021. Vol. 110. P. 375–384. doi: 10.1016/j.tifs.2021.02.014.
- Macedo J.V.C., de Barros Ranke F.F., Escaramboni B., Campioni T.S., Fernández Núñez E.G., de Oliva Neto P. Cost-effective lactic acid production by fermentation of agro-industrial residues // Biocatalysis and Agricultural Biotechnology. 2020. Vol. 27. P. 101706. doi: 10.1016/j.bcab.2020.101706.
- Tian X., Chen H., Liu H., Chen J. Recent advances in lactic acid production by lactic acid bacteria // Applied Biochemistry and Biotechnology. 2021. Vol. 193. P. 4151–4171. doi: 10.1007/s12010-021-03672-z.
- Bhattacharyya S.K., Palit S.K., Das A.R. Catalytic synthesis of lactic acid from acetaldehyde, carbon monoxide, and water // Industrial & Engineering Chemistry Product Research and Development. 1970. Vol. 9, no. 1. P. 92–95. doi: 10.1021/i360033a018.
- Abdel-Rahman M.A., Tashiro Y., Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes // Biotechnology Advances. 2013. Vol. 31, no. 6. P. 877–902. doi: 10.1016/j.biotechadv.2013.04.002.
- Полянский К.К., Шуваева Г.П., Деменко Н.Д., Яковлев В.Ф. Производство молочной кислоты // Известия высших учебных заведений. Пищевая технология. 1997. N 1. С. 8–14. EDN: QAKEYZ.
- Василинец И.М., Гаджиев Э.А., Евелева В.В., Филимонова И.Н., Черпалова Т.М. Использование крахмалосодержащего сырья в производстве пищевой молочной кислоты // Известия высших учебных заведений. Пищевая технология. 1998. N 4. С. 60–62. EDN: QCPDRV.
- Aso Y., Hashimoto A., Ohara H. Engineering Lactococcus lactis for D-lactic acid production from starch // Current Microbiology. 2019. Vol. 76, no. 10. P. 1186–1192. doi: 10.1007/s00284-019-01742-4.
- Abdel-Rahman M.A., Hassan S.E.-D., Alrefaey H.M.A., El-Belely E.F., Elsakhawy T., Fouda A., et al. Subsequent improvement of lactic acid production from beet molasses by Enterococcus hirae ds10 using different fermentation strategies // Bioresource Technology Reports. 2021. Vol. 13. P. 100617. doi: 10.1016/j.biteb.2020.100617.
- Wang Y., Deng W., Wang B., Zhang Q., Wan X., Tang Z., et al. Chemical synthesis of lactic acid from cellulose catalysed by lead (II) ions in water // Nature Communications. 2013. Vol. 4. P. 2141. doi: 10.1038/ncomms3141.
- Ahmad A., Banat F., Taher H. A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges // Environmental Technology & Innovation. 2020. Vol. 20. P. 101138. doi: 10.1016/j.eti.2020.101138.
- Palmonari A., Cavallini D., Sniffen C.J., Fernandes L., Holder P., Fagioli L., et al. Characterization of molasses chemical composition // Journal of Dairy Science. 2020. Vol. 103, no. 7. P. 6244–6249. doi: 10.3168/jds.2019-17644.
- Shipovskaya E.A., Eveleva V.V., Cherpalova T.M. Biosynthetic activity study of Lactobacillus acidophilus lactic acid bacteria in the lactose fermentation of whey // Известия вузов. Прикладная химия и биотехнология. 2019. Т. 9. N 4. С. 635–642. doi: 10.21285/2227-2925-2019-9-4-635-642. EDN: QJPYTD.
- Manoochehri H., Fayazi N., Saidijam M., Taheri M., Rezaee H., Nouri F. A review on invertase: its potentials and applications // Biocatalysis and Agricultural Biotechnology. 2020. Vol. 25. P. 101599. doi: 10.1016/j.bcab.2020.101599.
- De Ginés S.C., Maldonado M.C., de Valdez G.F. Purification and characterization of invertase from Lactobacillus reuteri CRL 1100 // Current Microbiology. 2000. Vol. 40, no. 3. P. 181–184. doi: 10.1007/s002849910036.
- Awad G.E., Amer H., El-Gammal E.W., Helmy W.A., Esawy M.A., Elnashar M.M. Production optimization of invertase by Lactobacillus brevis Mm-6 and its immobilization on alginate beads // Carbohydrate Polymers. 2013 Vol. 93, no 2. P. 740–746. doi: 10.1016/j.carbpol.2012.12.039.
- Liu J., Cheng J., Huang M., Shen C., Xu K., Xiao Y., et al. Identification of an invertase with high specific activity for raffinose hydrolysis and its application in soymilk treatment // Frontiers in Microbiology. 2021. Vol. 12. P. 646801. doi: 10.3389/fmicb.2021.646801.
Supplementary files


