Copper (II) and cobalt (II) bis(hexafluoroacetylacetonate) coordination complexes with N-styrylbenzimidazole

Cover Page

Cite item

Full Text

Abstract

   The study considers metal complexes based on N-styrylbenzimidazole as compounds having significant pharmacological properties   The work is aimed at examining the crystal structure and electronic structure of transition metal bis(hexafluoroacetylacetonate) complexes (copper (II) (complex A) and cobalt (II) (complex B)) with N-styrylbenzimidazole using X-ray diffraction analysis and ultraviolet spectroscopy.   The X-ray diffraction analysis was used to prove bipyramidal coordination in copper (II) and cobalt (II) bis(hexafluoroacetylacetonate) complexes with N-styrylbenzimidazole. The atoms of copper (II) and cobalt (II) in the complexes exhibit an unusual for β-diketonate complexes distorted square-planar coordination, while the chelate cycles in M(hfacac)2L are characterized by anomalously large kink angles. Thus, for the copper (II) bis(hexafluoroacetylacetonate) complex, the kink angle of the O3∙∙∙O4 interaction for the equatorially positioned ligand is 29.47°, while for the axially positioned ligand, the kink angle of the O1∙∙∙O2 interaction is 19.13°. For the cobalt (II) bis(hexafluoroacetylacetonate) complex, these angles are 22.10 and 19.50°, respectively. Electron spectroscopy was used to examine the electronic structure of the specified complexes. The following types of electronic transitions were identified: π→π*-transitions primarily localized on ligands, as well as transitions caused by electron transfer from the p-orbital of the hetero nitrogen atom of the styrylbenzimidazole cycle to the d-orbital of metal ions, and n→π transition localized on the imidazole ring. For each of the complexes, d-d* transitions between the molecular orbitals of the corresponding metal ion were localized in the long wavelength part of the spectrum.

About the authors

P. O. Chernigova

Irkutsk National Research Technical University

Email: polina.tchernigova@yandex.ru

L. M. Sinegovskaya

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: lida@irioch.irk.ru

L. N. Parshina

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: parshina@irioch.irk.ru

I. V. Sterkhova

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: irina_sterkhova@irioch.irk.ru

V. I. Smirnov

A.E. Favorsky Irkutsk Institute of Chemistry SB RAS

Email: smirnov@irioch.irk.ru

References

  1. Mishra S., Daniele S. Metal-organic derivatives with fluorinated ligands as precursors for inorganic nanomaterials // Chemical Reviews. 2015. Vol. 115, no. 16. P. 8379–8448. doi: 10.1021/cr400637c.
  2. Castillo-Blum S.E., Barba-Behrens N. Coordination chemistry of some biologically active ligands // Coordination Chemistry Reviews. 2000. Vol. 196, no. 1. P. 3–30. doi: 10.1016/S0010-8545(99)00153-8.
  3. Renfrew А.K. Transition metal complexes with bioactive ligands: mechanisms for selective ligand release and applications for drug delivery // Metallomics. 2014. Vol. 6, no. 8. P. 1324–1335. doi: 10.1039/C4MT00069B.
  4. Crowder J.M., Han H., Wei Z., Dikarev E.V., Petrukhina M.A. Unsolvated homo- and heterometallic highly fluorinated b-diketonate complexes of copper (II) // Polyhedron. 2019. Vol. 157. P. 33–38. doi: 10.1016/j.poly.2018.09.048.
  5. Shakhmardanova S.A., Maximov M.L., Parshina L.N., Trofimov B.A., Tarasov V.V., Chubarev V.N., et al. Pharmacological correction of hypoxic conditions by complexes of zinc with N-alkenylimidazoles // BioNanoSci. 2017. Vol. 7. P. 338–339. doi: 10.1007/s12668-016-0322-x.
  6. Aliev G., Li Y., Chubarev V.N., Lebedeva S.A., Parshina L.N., Trofimov B.A., et al. Application of acyzol in the context of zinc deficiency and perspectives // International Journal of Molecular Sciences. 2019. Vol. 20, no. 9. P. 2104. doi: 10.3390/ijms20092104.
  7. Parshina L.N., Trofimov B.A. Metal complexes with N-alkenylimidazoles: synthesis, structures, and biological activity // Russian Chemical Bulletin. 2011. Vol. 60. P. 601–614. doi: 10.1007/s11172-011-0096-9.
  8. Пат. № 2157813, Российская Федерация, МПК C07F 15/06, A61K 31/4164, A61P 7/06, A61P 31/04, A61P 37/02. Средство, обладающее лейкопоэзстимулирующим, иммуномодулирующим и антибактериальным действием / Л.В. Байкалова, Е.С. Домнина, Б.А. Трофимов, С.И. Кулинич, С.И. Колесников, Е.В. Одареева. Заявл. 29. 04. 1998; опубл. 20. 10. 2000.
  9. Parshina L.N., Grishchenko L.A., Khilko M.Ya., Gusarova N.K., Trofimov B.A. Environmentally benign (Green) synthesis of Cobazole, an efficient erythropoiesis-stimulating agent // Doklady Chemistry. 2016. Vol. 471. P. 360–361. doi: 10.1134/S001250081612003X.
  10. Kalita R.M., Baruah R.S., Medhi C. Synthesis, crystal structure, spectroscopic and antimicrobial properties of ruthenium complexes of vinyl imidazole and 4-ethylaminomethyl pyridine ligands // Asian Journal of Chemistry. 2021. Vol. 33, no. 4. P. 859–866. doi: 10.14233/ajchem.2021.23099.
  11. Dias R.M.P., de Oliveira G.P., Burtoloso A.C.B. One-pot synthesis of b-O-4 lignin models via the insertion of stable 2-diazo-1,3-dicarbonyls into O-H bonds // Organic & Biomolecular Chemistry. 2020. Vol. 18. P. 4815–4823. doi: 10.1039/D0OB00800A.
  12. Cruz-Navarro A., Hernandez-Romero D., Flores-Parra A., Rivera J.M., Castillo-Blum S.E., Colorado-Peralta R. Structural diversity and luminescent properties of coordination complexes obtained from trivalent lanthanide ions with the ligands: tris((1H-benzoimidazole-2-y1)methy1) amine and 2,6-bis(1H-benzoimidazole-2-y1)pyridine // Coordination Chemistry Reviews. 2021. Vol. 427. P. 213587. doi: 10.1016/j.ccr.2020.213587.
  13. Pedersen A.H., Julve M., Martínez-Lillo J., Cano J., Brechin E.K. Magneto-structural correlations in a family of ReIV CuII chains based on the hexachlororhenate (IV) metalloligand // Dalton Transactions. 2017. Vol. 46. P. 16025–16033. doi: 10.1039/C7DT02216F.
  14. Ong Y.C., Roy S., Andrews P.C., Gasser G. Metal compounds against neglected tropical diseases // Chemical Reviews. 2019. Vol. 119, no. 2. P. 730–796. doi: 10.1021/acs.chemrev.8b00338.
  15. Hernández-Romero D., Rosete-Luna S., López-Monteon A., Chávez-Piña A., Pérez-Hernández N., Marroquín-Flores J., et al. First-row transition metal compounds containing benzimidazole ligands: an overview of their anticancer and antitumor activity // Coordination Chemistry Reviews. 2021. Vol. 439. P. 213930. doi: 10.1016/j.ccr.2021.213930.
  16. Anbu S., Paul A., Surendranath K., Solaiman N.S., Pombeiro A.J.L. A benzimidazole-based new fluorogenic differential/sequential chemosensor for Cu2+, Zn2+, CN-, P2O7 4-, DNA, its live-cell imaging and pyrosequencing applications // Sensors and Actuators: B. Chemical. 2021. Vol. 337. P. 129785. doi: 10.1016/j.snb.2021.129785.
  17. Gökçen M., Orhan E., Taran S. Synthesis and characterization of novel benzimidazole cobalt and copper complexes and applying in Au/PVA/n-Si diode // Physica B: Condensed Matter. 2020. Vol. 589. P. 412217. doi: 10.1016/j.physb.2020.412217.
  18. Likhtenshtein G.I. Stilbenes. Applications in chemistry, life sciences and materials science. Weinheim: Wiley-VCH, 2009. 360 p.
  19. Keylor M.H., Matsuura B.S., Stephenson C.R.J. Chemistry and biology of resveratrol-derived natural products // Chemical Reviews. 2015. Vol. 115, no. 17. P. 8976–9027. doi: 10.1021/cr500689b.
  20. Smirnov V.I., Sinegovskaya L.M., Parshina L.N., Artem’ev A.V., Sterkhova I.V. Copper(II), cobalt(II), manganese(II) and nickel(II) bis(hexafluoroacetylacetonate) complexes with N-vinylimidazole // Mendeleev Communications. 2020. Vol. 30, no. 2. P. 246–248. doi: 10.1016/j.mencom.2020.03.040.
  21. Dolomanov O.V., Bourhis L.J., Gildea R.J, Howard J.A.K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program // Journal of Applied Crystallography. 2009. Vol. 42. P. 339–341. doi: 10.1107/S0021889808042726.
  22. Sheldrick G.M. A short history of SHELX // Acta Crystallographica. Section A: Foundations of Crystallography. 2008. Vol. 64, no. 1. P. 112–122. doi: 10.1107/S0108767307043930.
  23. Мазалов Л.Н., Трубина С.В., Фомин Э.С., Оглезнева И.М., Парыгина Г.К., Бауск Н.В.. Рентгеноспектральное изучение электронной структуры ацетилацетоната меди(II) // Журнал структурной химии. 2004. Т. 45. N 5. С. 844–851. EDN: PBMCEP.
  24. Ливер Э. Электронная спектроскопия неорганических соединений / пер. с англ.; под ред. А.Ю. Цивадзе. В 2 ч. М.: Мир, 1987. Ч. 1. 493 с.
  25. Нефедов В.И., Вовна В.И. Электронная структура химических соединений / отв. ред. И.Б. Барановский. М.: Наука, 1987. 347 c.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).