Deep eutectic solvents based on glycerol as selective extractants for the recovery of aromatic hydrocarbons and petroleum acids from model fuel

Cover Page

Cite item

Full Text

Abstract

The study set out to extract various types of hydrocarbons from model fuels using deep eutectic solvents based on glycerol. These solvents were synthesised by mixing glycerol as acting as a hydrogen bond donor with ammonium chloride or triethylammonium acetate [tea] [AcO]- acting as a hydrogen bond acceptor at room temperature in a volume ratio of 1:6. A mixture of n-decane and n-hexadecane was selected as components of the model fuel. For the extraction of mixtures of benzene, ethylbenzene (5%), p-, m-, o-cresol, fluorenone (3.5%) and petroleum acids (25%), these deep eutectic solvents were used at room temperature, as well as at a temperature of 60°C, and at atmospheric pressure. Extraction efficiency was evaluated by [1]NMR spectroscopy. The results demonstrated the complete single-stage extraction of p-, m- and o-cresols from the model fuel using the studied deep eutectic solvents. A deep eutectic solvent based on glycerol and triethylammonium acetate was found to have the highest extraction efficiency. The recovery rates for benzene, ethylbenzene, and fluorenone at room temperature are achieved in 3 hours of stirring (75, 25, and 53%, respectively). M- and o-cresols were fully recovered in 1 hour in a single step using a deep eutectic solvent based on triethylammonium acetate, while complete extraction of aromatic acids from a mixture of petroleum acids in model fuel was achieved using a deep eutectic solvent obtained by mixing ammonium chloride and glycerol.

About the authors

S. A. Niftullayeva

Baku State University

Email: niftullayevasayad@gmail.com

Y. V. Mamedova

Baku State University

Email: mamedova_yegane75@mail.ru

I. G.  Mamedov

Baku State University

Email: bsu.nmrlab@gmail.com

References

  1. Stanislaus A., Cooper B.H. Aromatic hydrogenation catalysis: a review. Catalysis Reviews. 1994;36(1):75-123. doi: 10.1080/01614949408013921.
  2. Sharma M., Sharma P., Kim J.N. Solvent extraction of aromatic components from petroleum derived fuels: a perspective review. RSC Advances. 2013;3(26):1010310126. doi: 10.1039/C3RA00145H.
  3. Adžamić T., Sertiæ-Bionda K., Zoretić Z. Desulfurization of FCC gasoline by extraction with sulfolane and furfural. Nafta. 2009;60(9):485-490.
  4. Shen H., Shen B., Ling H. Desulfurization of fluid catalytic cracking gasoline by extractive distillation coupled with hydrodesulfurization of heavy fraction. Energy & Fuels. 2013;27(9):5153-5160. doi: 10.1021/ef401075x
  5. Kianpour E., Azizian S. Polyethylene glycol as a green solvent for effective extractive desulfurization of liquid fuel at ambient conditions. Fuel. 2014;137:36-40. doi: 10.1016/j.fuel.2014.07.096.
  6. Hadj-Kali M.K., Salleh Z., Ali E., Khan R., Hashim M.A. Separation of aromatic and aliphatic hydrocarbons using deep eutectic solvents: a critical review. Fluid Phase Equilibria. 2017;448:152-167. doi: 10.1016/j.fluid.2017.05.011.
  7. Meindersma G.W., Hansmeier A.R., de Haan A.B. Ionic liquids for aromatics extraction. Present status and future outlook. Industrial & Engineering Chemistry Research. 2010;49(16):7530-7540. doi: 10.1021/ie100703p.
  8. Navarro P., de Dios-García I., Larriba M., Delgado-Mellado N., Ayuso M., Moreno D., et al. Dearomatization of pyrolysis gasoline by extractive distillation with 1-ethyl-3-methylimidazolium tricyanomethanide. Fuel Processing Technology. 2019;195:106156. doi: 10.1016/j.fuproc.2019.106156.
  9. Fang W., Shao D., Lu X., Guo Y., Xu L. Extraction of aromatics from hydrocarbon fuels using N-alkyl piperazinium-based ionic liquids. Energy & Fuels. 2012;26(4):21542160. doi: 10.1021/ef201955n.
  10. Romero A., Santos A., Tojo J., Rodríguez A.J. Toxicity and biodegradability of imidazolium ionic liquids. Journal of Hazardous Materials. 2008;151(1):268-273. doi: 10.1016/j.jhazmat.2007.10.079.
  11. Pham T.P.T., Cho C.-W., Yun Y.-S. Environmental fate and toxicity of ionic liquids: a review. Water Research. 2010;44(2):352-372. doi: 10.1016/j.watres.2009.09.030.
  12. Smith E.L., Abbott A.P., Ryder K.S. Deep eutectic solvents (DESs) and their applications. Chemical Reviews. 2014;114(21):11060-11082. doi: 10.1021/cr300162p.
  13. Tang B., Zhang H., Row K.H. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. Journal of Separation Science. 2015;38(6):1053-1064. doi: 10.1002/jssc.201401347.
  14. Kudłak B., Owczarek K., Namieśnik J. Selected issues related to the toxicity of ionic liquids and deep eutectic solvents – a review. Environmental Science and Pollution Research. 2015;22:11975-11992. doi: 10.1007/s11356-015-4794-y.
  15. Larriba M., Ayuso M., Navarro P., Delgado-Mellado N., Gonzalez-Miquel M., Garcia J., et al. Choline chloride-based deep eutectic solvents in the dearomatization of gasolines. ACS Sustainable Chemistry & Engineering. 2018;6(1):10391047. doi: 10.1021/acssuschemeng.7b03362.
  16. Warrag S.E.E., Darwish A.S., Abuhatab F.O.S., Adeyemi I.A., Kroon M.C., AlNashef I.M. Combined extractive dearomatization, desulfurization, and denitrogenation of oil fuels using deep eutectic solvents: a parametric study. Industrial & Engineering Chemistry Research. 2020;59(25):11723-11733. doi: 10.1021/acs.iecr.0c01360.
  17. Lemaoui T., Benguerba Y., Darwish A.S., Hatab F.A., Warrag S.E.E., Kroon M.C., et al. Simultaneous dearomatization, desulfurization, and denitrogenation of diesel fuels using acidic deep eutectic solvents as extractive agents: a parametric study. Separation and Purification Technology. 2021;256:117861. doi: 10.1016/j.seppur.2020.117861.
  18. Naik P.K., Dehury P., Paul S., Banerjee T. Evaluation of deep uutectic solvent for the selective extraction of toluene and quinoline at T = 308.15 K and p = 1 bar. Fluid Phase Equilibria. 2016;423:146-155. doi: 10.1016/j.fluid.2016.04.018.
  19. Kareem M.A., Mjalli F.S., Hashim M.A., Hadj-Kali M.K.О., Bagh F.S.G., Alnashef I.M. Phase equilibria of toluene/heptane with tetrabutylphosphonium bromide based deep eutectic solvents for the potential use in the separation of aromatics from naphtha. Fluid Phase Equilibria. 2012;333:47-54. doi: 10.1016/j.fluid.2012.07.020.
  20. El Achkar T., Greige-Gerges H., Fourmentin S. Basics and properties of deep eutectic solvents: a review. Environmental Chemistry Letters. 2021;19:3397-3408. doi: 10.1007/s10311-021-01225-8.
  21. Stenehjem J.S., Kjærheim K., Bråtveit M., Samuelsen S.O., Barone-Adesi F., Rothman N., et al. Benzene exposure and risk of lymphohaematopoietic cancers in 25000 offshore oil industry workers. British Journal of Cancer. 2015;112(9):1603-1612. doi: 10.1038/bjc.2015.108.
  22. Verma D.K., des Tombe K. Benzene in gasoline and crude oil: occupational and environmental implications. AIHA Journal. 2002;63(2):225-230. doi: 10.1080/15428110208984708.
  23. Rada E.C., Raboni M., Torretta V., Copelli S., Ragazzi M., Caruson P., Istrate I.A. Removal of benzene from oil refinery wastewater treatment plant exchausted gases with a multi-stage biofiltration pilot plant. Revista de Chimie. 2014;65(1):68-70.

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).