Impact of cultivation conditions on xylanase production and growth in Paenibacillus mucilaginosus

Cover Page

Cite item

Full Text

Abstract

Xylanase is an enzyme that hydrolyses β-1,4 bonds in plant xylan. This enzyme is applied in the bioconversion of agro-industrial waste for xylooligosaccharide hydrolysate production to improve digestibility and nutrition value of animal feed, food processing, the utilisation and faster decomposition of crop debris in soil, as well as in cellulose bleaching and other industries. The current trend focuses on using renewable resources, such as agricultural waste, as substitutes for expensive purified xylan in producer screening and xylanase synthesis. This work aimed to determine the impact of Paenibacillus mucilaginosus cultivation conditions on the xylanase production yield. Rice bran ferment lysate along with birch and beech timber xylans were used as a carbon source. Temperature, medium pH, pH correction factors, inoculant incubation time, carbon and nitrogen sources and concentrations were the studied criteria of xylanase biosynthesis and growth in bacteria P. ucilaginosus strain 560. We show that the xylanase biosynthesis and cultivation in P. mucilaginosus strain 560 are more practical and cost-effective with the use of a rice bran ferment lysate-based nutrient medium. Inductors contained in the rice bran ferment lysate improve the xylanase biosynthesis. Calcium ions also facilitate biosynthesis in the studied strain. Cultivation recommendations are: carbon source concentration in medium 0.5% of total reducing substances content; 0.2% carbamide as optimal nitrogen source; calcium hydroxide as an agent for medium pH correction to 6.0±0.2; cultivation temperature 30±1 °С. Under the specified conditions, cultivation of P. mucilaginosus does not require inoculate preprocessing, and a maximal xylanase activity in stationary culture reaches 20 U/mL.

About the authors

D. T. Ha

Kazan National Research Technological University

Email: coldwind.91@mail.ru

A. V. Kanarskiy

Kazan National Research Technological University

Email: alb46@mail.ru

Z. A. Kanarskaya

Kazan National Research Technological University

Email: zosya_kanarskaya@mail.ru

A. V. Scherbakov

All-Russia Research Institute for Agricultural Microbiology

Email: microbe-club@inbox.ru

E. N. Scherbakova

All-Russia Research Institute for Agricultural Microbiology

Email: alonagonchar@mail.ru

A. V. Pranovich

Abo Academy

Email: apranovi@abo.fi

References

  1. Collins T., Gerday C., Feller G. Xylanases, xylanase families and extremophilic xylanases // FEMS Microbiology Reviews. 2005. Vol. 29. Issue 1. P. 3–23. https://doi.org/10.1016/j.femsre.2004.06.005
  2. Sedlmeyer F.B. Xylan as a by-product of biorefineries: characteristics and potential use for food applications // Food Hydrocolloids. 2014. Vol. 25. Issue 8. P. 1891–1898. https://doi.org/10.1016/J.FOODHYD.2011.04.005
  3. Shanthi V., Roymon M.G. Isolation and screening of alkaline thermostable xylanase producing bacteria from soil in Bhilai Durg region of Chhattisgarh, India // International Journal of Current Microbiology and Applied Sciences. 2014. Vol. 3. Issue 8. P. 303–311.
  4. Habibi Y., Vignon M.R. Isolation and characterization of xylans from seed pericarp of Argania spinosa fruit // Carbohydrate Research. 2005. Vol. 340. Issue 7. P. 1431–1436. https://doi.org/10.1016/j.carres.2005.01.039
  5. Singh S., Madlala A.M., Prior B.A. Thermomyces lanuginosus: properties of strains and their hemicellulases // FEMS Microbiology Reviews. 2003. Vol. 27. Issue 1. Р. 3–16. https://doi.org/10.1016/S0168-6445(03)00018-4
  6. Kulkarni N., Shendye A., Rao M. Molecular and biotechnological aspects of xylanases // FEMS Microbiology reviews. 1999. Vol. 23. Issue 4. Р. 411–456. https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  7. Фенгел Д., Вегенер Г. Древесина. Химия. Ультраструктура. Реакции / пер. с англ. А.В. Оболенской, З.П. Ельницкой; под ред. А.А. Леоновича. М.: Лесная промышленность, 1988. 511 с.
  8. Chanda S.K., Hirst E.L., Jones J.K.N., Percival E.G.V. 262. The constitution of xylan from esparto grass (Stipa tenacissima, L.) // Journal of the Chemical Society (Resumed). 1950. Р. 1289–1297. https://doi.org/10.1039/JR9500001289
  9. Eda S., Ohnishi A., Katō K. Xylan isolated from the stalk of Nicotiana tabacum // Agricultural and Biological Chemistry. 1976. Vol. 40. Issue 2. Р. 359–364.
  10. Barry V.C., Dillon T. Occurrence of xylans in marine algae // Nature. 1940. Vol. 146. Issue 3706. Р. 620–620. https://doi.org/10.1038/146620a0
  11. Percival E.G.V., Chanda S.K. The xylan of Rhodymenia palmate // Nature. 1950. Vol. 166. Issue 4227. Р. 787–788. https://doi.org/10.1038/166787b0
  12. Kaur A., Singh A., Patra A.K., Mahajan R. Cost-effective scouring of flax fibers using cellulase-free xylano-pectinolytic synergism from a bacterial isolate // Journal of Cleaner Production. 2016. Vol. 131. Р. 107–111. https://doi.org/10.1016/j.jclepro.2016.05.069
  13. Akin D.E. Plant cell wall aromatics: influence on degradation of biomass // Biofuels, Bioproducts and Biorefining. 2008. Vol. 2. Р. 288–303. https://doi.org/10.1002/bbb.76
  14. Kaur A., Mahajan R., Singh A., Garg G., Sharma J. A novel and cost effective methodology for qualitative screening of alkalothermophilic cellulase free xylano-pectinolytic microorganisms using agricultural wastes // World Journal of Microbiology and Biotechnology. 2011. Vol. 27. Р. 459–463. https://doi.org/10.1007/s11274-010-0457-9
  15. Subramaniyan S., Prema P. Biotechnology of microbial xylanases: Enzymology, molecular biology and application // Critical Reviews in Biotechnology. 2002. Vol. 22. Issue 1. Р. 33–64. https://doi.org/10.1080/07388550290789450
  16. Velázquez E., de Miguel T., Poza M., Rivas R., Rosselló-Mora R., Villa T.G. Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces // International Journal of Systematic and Evolutionary Microbiology. 2004. Vol. 54. Issue 1. Р. 59–64. https://doi.org/10.1099/ijs.0.02709-0
  17. Rivas R., Mateos P.F., Martínez-Molina E., Velázquez E. Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera // International Journal of Systematic and Evolutionary Microbiology. 2005. Vol. 55. Issue 2. Р. 743–746. https://doi.org/10.1099/ijs.0.63323-0
  18. Sánchez M.M., Fritze D., Blanco A., Spröer C., Tindall B.J., Schumann P., et al. Paenibacillus barcinonensis sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta // International Journal of Systematic and Evolutionary Microbiology. 2005. Vol. 55. Issue 2. Р. 935–939. https://doi.org/10.1099/ijs.0.63383-0
  19. Ten L.N., Baek S.H., Im W.T., Lee M., Oh H.W., Lee S.T. Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea // International Journal of Systematic and Evolutionary Microbiology. 2006. Vol. 56. Issue 11. Р. 2677–2681. http://doi.org/10.1099/ijs.0.64405-0
  20. Пат. № 2662931, Российская Федерация, C12N 1/20, C12N 9/00. Биологическая основа микробной кормовой добавки / Г.Ф. Рафикова, Логинова Е.В., Мелентьева А.И., Логинов О.Н.; заявл.22.02.2017; опубл. 31.07.2018.
  21. Li X., Yang S.H., Yu X.C., Jin Z.X., Li W.D., Li L., et al. Construction of transgenic Bacillus mucilaginosus strain with improved phytase secretion // Journal of Applied Microbiology. 2005. Vol. 99. Issue 4. Р. 878–884. https://doi.org/10.1111/j.1365-2672.2005.02683.x
  22. Von Schoultz S., AB BLN-WOODS LTD. Method for extracting biomass. U.S. Patent Application. 14/413,409. 2015. https://doi.org/10.1080/00031305.1999.10474445
  23. Czitrom V. One-factor-at-a-time versus designed experiments // The American Statistician. 1999. Vol. 53. Issue 2. Р. 126–131.
  24. Maier R.M. Environmental microbiology (second edition). Chapter 3. Bacterial Growth. Elsevier Inc. 2009. Р. 37–54. https://doi.org/10.1016/B978-0-12-370519-8.00003-1
  25. Bailey M., Biely P., Poutanen K. Interlaboratory testing of methods for assay of xylanase activity // Journal of Biotechnology. 1992. Vol. 23. Issue 3. Р. 257–270. https://doi.org/10.1016/0168-1656(92)90074-J
  26. Морозова Ю.А., Скворцов Е.В., Алимова Ф.К., Канарский А.В. Биосинтез ксиланаз и целлюлаз грибами рода Trichoderma на послеспиртовой барде // Вестник Казанского технологического университета. 2012. Vol. 15. N 19. Р. 120– 122.
  27. Dias F.E, Okrend H., Dondero N.C. Growthpromoting activity of spent sulfite liquor for Sphaerotilus natans growing in a continuous-flow apparatus // Applied Microbiology. 1968. Vol. 16. Issue 2. Р. 276–278. https://doi.org/10.1128/aem.16.2.276-278.1968
  28. Patrauchan M.A., Sarkisova S., Sauer K., Franklin M.J. Calcium influences cellular and extracellular product formation during biofilm-associated growth of a marine Pseudoalteromonas sp. // Microbiology. 2005. Vol. 151. Issue 9. Р. 2885–2897. https://doi.org/10.1099/mic.0.28041-0
  29. Lamed R., Setiter E., Bayer E.A. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum // Journal of Bacteriology. 1983. Vol. 156. Issue 2. P. 828–836. https://doi.org/10.1128/JB.156.2.828-836.1983
  30. Grepinet O., Chebrou M.C., Beguin P. Nucleotide sequence and deletion analysis of the xylanase gene (xynZ) of Clostridium thermocellum // Journal of Bacteriology. 1988. Vol. 170. Issue 10. Р. 4582–4588. https://doi.org/10.1128/jb.170.10.4582-4588.1988
  31. Ratanakhanokchai K., Kyu K.L., Tanticharoen M. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1 // Applied and Environmental Microbiology. 1999. Vol. 65. Issue 2. Р. 694–697. https://doi.org/10.1128/AEM.65.2.694-697.1999
  32. Howieson J.G., Robson A.D., Abbott L.K. Calcium modifies pH effects on acid-tolerant and acidsensitive strains of Rhizobium meliloti // Australian Journal of Agricultural Research. 1992. Vol. 43. Issue 3. Р. 765–772. https://doi.org/10.1071/AR9920765
  33. Haltrich D., Nidetzky B., Kulbe K.D., Steiner W., Župančič S. Production of fungal xylanases // Bioresource Technology. 1996. Vol. 58. Issue 2. Р. 137–161. https://doi.org/10.1016/S0960-8524(96)00094-6
  34. Kulkarni N., Shendye A., Rao M. Molecular and biotechnological aspects of xylanases // FEMS Microbiology Reviews. 1999. Vol. 23. Issue 4. Р. 411–456. https://doi.org/10.1111/j.1574-6976.1999.tb00407.x
  35. Ko C.-H., Lin Z.-P., Tu J., Tsai C.-H., Liu C.-C., Chen H.-T., et al. Xylanase production by Paenibacillus campinasensis BL11 and its pretreatment of hardwood kraft pulp bleaching // International Biodeterioration & Biodegradation. 2010. Vol. 64. Issue 1. Р. 13–19. https://doi.org/10.1016/j.ibiod.2009.10.001

Supplementary files

Supplementary Files
Action
1. JATS XML


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).