The authentic live influenza cell-based vaccine and its imitations

Cover Page

Cite item

Full Text

Abstract

The problem of transferring the technology of influenza vaccine production from developing chicken embryos to mammalian cell culture has been discussed for many years. The technologies being developed for the production of cell-based vaccines rely on two promising substrates — continuous Vero and MDCK cell lines, which effectively support the replication of influenza viruses of various subtypes. In 2018, the WHO issued the first recommendations on the composition of influenza vaccines produced in mammalian cell culture. Since then, the WHO has issued separate recommendations for egg-based and cell-based vaccines for the upcoming epidemic season. The cell-based influenza vaccine has a number of undeniable advantages: the possibility of mass production of the vaccine preparation, which is particularly important during a pandemic, and the lack of an allergenic factor such as egg white in the vaccine. It is also believed that conventional egg-based influenza vaccines may be less effective than cell-based vaccines due to acquired adaptive “egg” mutations. All of the above suggests that the development of appropriate cellular systems highly sensitive to currently circulating influenza virus strains and capable of ensuring the accumulation of large amounts of viral biomass is of considerable practical interest. If we compare two conventional influenza vaccines, inactivated and live, the latter has a number of advantages, such as a non-injection route of administration, a broader spectrum of protection, high yield, low cost, simplicity of the production process, etc. If we add to this a new — cellular — substrate for the production and accumulation of viral biomass, we have the prospect of developing a vaccine preparation with virtually no drawbacks. Despite the obvious advantages of cell culture as a substrate for influenza vaccine production, some influenza vaccines, including live attenuated cold-adapted influenza vaccine, are still produced in the developing chicken embryos. Therefore, we considered it appropriate to collect the available scientific literature on the development of approaches for the production of a live influenza cold-adapted cell-based vaccine.

About the authors

Irina V. Kiseleva

Institute of Experimental Medicine

Author for correspondence.
Email: irina.v.kiseleva@mail.ru
ORCID iD: 0000-0002-3892-9873
SPIN-code: 7857-7306

DSc (Biology), Professor, Head of Laboratory of General Virology

Russian Federation, St. Petersburg

N. V. Larionova

Institute of Experimental Medicine

Email: nvlarionova@mail.ru
ORCID iD: 0000-0003-1171-3383
SPIN-code: 4709-5010

DSc (Biology), Leading Researcher, Laboratory of General Virology

Russian Federation, St. Petersburg

References

  1. Киселева И.В., Исакова И.Н., Ларионова Н.В., Олейник Е.С., Руденко Л.Г. Эффективность получения реассортантов между эпидемическими и холодоадаптированными вирусами гриппа в развивающихся куриных эмбрионах и в культуре клеток MDCK // Журнал микробиологии, эпидемиологии и иммунобиологии. 2007. № 6. С. 40–45. [Kiseleva I.V., Isakova I.N., Larionova N.V., Oleĭnik E.S., Rudenko L.G. Efficacy of production of reassortant of epidemic strains and cold-adapted influenza viruses in chicken embryo and MDCK cells. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2007, no. 6, pp. 40–45. (In Russ.)]
  2. Нечаева Е.А., Радаева И.Ф., Сенькина Т.Ю., Герасименко Н.Б., Богрянцева М.П., Костылева Р.Н., Жилина Н.В., Свириденко Н.М., Зубарева К.Э., Вараксин Н.А., Рябичева Т.Г., Киселева И.В., Ларионова Н.В., Руденко Л.Г. Разработка опытно-промышленной технологии производства живой культуральной вакцины против пандемического гриппа // Биотехнология. 2013. № 6. С. 23–34. [Nechaeva E.A., Radaeva I.F., Sen’kina T.Yu., Gerasimenko N.B., Bogryantseva M.P., Kostyleva R.N., Zhilina N.V., Sviridenko T.M., Zubareva K.E., Varaksin N.A., Ryabicheva T.G., Kiseleva I.V., Larionova N.V., Rudenko L.G. Development of pilot technology for cell-based anti-influenza live attenuated pandemic vaccine manufacturing. Biotekhnologiya = Biotechnology in Russia, 2013, no. 6, pp. 23–34. (In Russ.)]
  3. Патент № 2413765 Российская Федерация, МПК A61K 39/145, C12N 7/00 (2006.01). Вакцинный штамм вируса гриппа А/17/Калифорния/2009/38 (H1N1) для производства живой гриппозной интраназальной вакцины для взрослых и для детей: № 2009136544/13; заявлено 2009.09.16; опубликовано 2011.03.10 / Ларионова Н.В., Киселева И.В., Александрова Г.И., Руденко Л.Г. Патентообладатель: Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины» (ФГБНУ «ИЭМ»). 5 с. [Patent No. 2413765 Russian Federation, Int. Cl. A61K 39/145, C12N 7/00 (2006.01). Vaccine strain of influenza virus A/17/California/2009/38 (H1N1) for production of live attenuated intranasal influenza vaccine for adults and children. No. 2009136544/13; application: 2009.09.16; date of publication: 2011.03.10 / Larionova N.V., Kiseleva I.V., Alexandrova G.I., Rudenko L.G. Proprietor: Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (FGBNU “IEM”). 5 p.]
  4. Патент № 2314344 Российская Федерация, МПК C12N 7/00 (2006.01). Способ крупномасштабного производства вирусного антигена: № 2003138408/13; заявлено 2003.12.10; опубликовано 2008.01.10 / Райтер М., Мундт В. Патентообладатель: GlaxoSmithKline Biologicals S.A. 31 с. [Patent No. 2314344 Russian Federation, Int. Cl. C12N 7/00 (2006.01). Method for large-scale production of viral antigen. No. 2003138408/13; application: 2003.12.10; date of publication: 2008.01.10 / Reiter M., Mundt W. Proprietor: GlaxoSmithKline Biologicals S.A. 31 p.]
  5. Патент № 2491339 Российская Федерация, МПК C12N 7/00, C12N 7/04 (2006.01). Способ репликации вируса гриппа в культуре: № 2009126747/10; заявлено 2009.07.16; опубликовано 2013.08.27 / Уесмоен Т.Л., Гао П., Эдди Б.А., Абдельмагид О.Ю. Патентообладатель: Schering-Plough Ltd. (Шеринг-Плау Лтд.). 19 с. [Patent No. 2491339 Russian Federation, Int. Cl. C12N 7/00, C12N 7/04 (2006.01). Method of influenza virus replication in culture. No. 2009126747/10; application: 2009.07.16; date of publication: 2013.08.27 / Wesmoen T.L., Gao P., Eddy B.A., Abdelmagid O.Y. Proprietor: Schering-Plough Ltd. 19 p.]
  6. Патент № 2547587 Российская Федерация, МПК C12N 7/00, C12N 7/04 (2006.01). Способы культивирования клеток, размножения и очистки вирусов: № 2011116124/10; заявлено 2011.04.21; опубликовано 2015.04.10 / Лю Д., Томпсон М., Маранга Л.Ж., Катаниаг Ф., Сюй С.С. Патентообладатель: MedImmune, LLC. 21 с. [Patent No. 2547587 Russian Federation, Int. Cl. C12N 7/00, C12N 7/04 (2006.01). Methods for cultivating cells, propagating and purifying viruses. No. 2011116124/10; application: 2011.04.21; date of publication: 2015.04.10 / Liu D., Thompson M., Maranga L.J., Cataniag F., Xu S.S. Proprietor: MedImmune, LLC. 21 p.]
  7. Патент № 2617051 Российская Федерация, МПК A61K 39/145, C12N 7/00 (2006.01). Способ получения микрокапсулированной формы живой культуральной вакцины против сезонного и пандемического гриппа для интраназального применения: № 2015141692; заявлено 2015.10.10; опубликовано 2017.04.19 / Нечаева Е.А., Сенькина Т.А., Радаева И.Ф., Вараксин Н.А., Рябичева Т.Г., Жилина Н.В., Думченко Н.Б., Руденко Л.Г., Киселева И.В., Исакова-Сивак И.Н. Патентообладатель: Федеральное государственное бюджетное научное учреждение «Институт экспериментальной медицины». 9 с. [Patent No. 2617051 Russian Federation, Int. Cl. A61K 39/145, C12N 7/00 (2006.01). Method for producing microencapsulated form of live culture vaccine against seasonal and pandemic influenza for intranasal administration. No. 2015141692; application: 2015.10.10; date of publication: 2017.04.19 / Nechaeva E.A., Senkina T.A., Radaeva I.F., Varaksin N.A., Ryabicheva T.G., Zhilina N.V., Dumchenko N.B., Rudenko L.G., Kiseleva I.V., Isakova-Sivak I.N. Proprietor: Federal State Budgetary Scientific Institution “Institute of Experimental Medicine”. 9 p.]
  8. Aldeán Á.J., Salamanca I., Ocaña D., Barranco J.L., Walter S. Effectiveness of cell culture-based influenza vaccines compared with egg-based vaccines: What does the literature say? Rev. Esp. Quimioter., 2022, vol. 35, no. 3, pp. 241–248. doi: 10.37201/req/117.2021
  9. Alymova I.V., Kodihalli S., Govorkova E.A., Fanget B., Gerdil C., Webster R.G. Immunogenicity and protective efficacy in mice of influenza B virus vaccines grown in mammalian cells or embryonated chicken eggs. J. Virol., 1998, vol. 72, no. 5, pp. 4472–4477. doi: 10.1128/JVI.72.5.4472-4477.1998
  10. Andrianov A.K., Chen J. Preparation of ionically cross-linked polyphosphazene microspheres by coacervation. US Patent No. 5807757. Effective date for property rights 02.07.1996. Published 15.09.1998.
  11. Audsley J.M., Tannock G.A. Cell-based influenza vaccines: progress to date. Drugs, 2008, vol. 68, no. 11, pp. 1483–1491. doi: 10.2165/00003495-200868110-00002
  12. Bilsel P., Kawaoka Y. Cell-based systems for producing influenza vaccines. International Patent No. 2351300. Effective date for property rights 11.06.2008. Published 09.06.2009.
  13. Boikos C., Sylvester G.C., Sampalis J.S., Mansi J.A. Relative Effectiveness of the Cell–Cultured Quadrivalent Influenza Vaccine Compared to Standard, Egg-derived Quadrivalent Influenza Vaccines in Preventing Influenza-like Illness in 2017–2018. Clin. Infect. Dis., 2020, vol. 68, no. 11, pp. e665–e671. doi: 10.1093/cid/ciaa371
  14. CDC. Prevention and control of seasonal influenza with vaccines. Recommendations of the Advisory Committee on Immunization Practices. United States, 2013–2014. MMWR Recomm. Rep., 2013, vol. 62, pp. 1–43.
  15. CDC. 2025. Cell-based flu vaccines. URL: https://www.cdc.gov/flu/vaccine-types/cell-based.html
  16. Cheng X., Zengel J.R., Suguitan A.L. Jr., Xu Q., Wang W., Lin J., Jin H. Evaluation of the humoral and cellular immune responses elicited by the live attenuated and inactivated influenza vaccines and their roles in heterologous protection in ferrets. J. Infect. Dis., 2013, vol. 208, no. 4, pp. 594–602. doi: 10.1093/infdis/jit207
  17. FDA. 20 November 2012. Approval Letter – Flucelvax. URL: https://web.archive.org/web/20160310193425/http://www.fda.gov/BiologicsBloodVaccines/Vaccines/ApprovedProducts/ucm328684.htm
  18. Feng S.Z., Jiao P.R., Qi W.B., Fan H.Y., Liao M. Development and strategies of cell-culture technology for influenza vaccine. Appl. Microbiol. Biotechnol., 2011, vol. 89, no. 4, pp. 893–902. doi: 10.1007/s00253-010-2973-9
  19. Frech C., Lubben H., Vorlop J., Gregersen J-P. Procedure for the industrial-scale preparation of vaccines. European Patent No. 2351300. Effective date for property rights 12.09.2001. Published 02.02.2011.
  20. Genzel Y., Dietzsch C., Rapp E., Schwarzer J., Reichl U. MDCK and Vero cells for influenza virus vaccine production: a one-to-one comparison up to lab-scale bioreactor cultivation. Appl. Microbiol. Biotechnol., 2010, vol. 88, no. 2, pp. 461–475. doi: 10.1007/s00253-010-2742-9
  21. Heldens J., Hulskotte E., Voeten T., Breedveld B., Verweij P., Van Duijnhoven W., Rudenko L., Van Damme P., Van Den Bosch H. Safety and immunogenicity in man of a cell culture derived trivalent live attenuated seasonal influenza vaccine: a Phase I dose escalating study in healthy volunteers. Vaccine, 2014, vol. 32, no. 39, pp. 5118–5124. doi: 10.1016/j.vaccine.2014.05.030
  22. Hussain A.I., Cordeiro M., Sevilla E., Liu J. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells. Vaccine, 2010, vol. 28, no. 22, pp. 3848–3855. doi: 10.1016/j.vaccine.2010.03.005
  23. Izurieta H.S., Chillarige Y., Kelman J., Wei Y., Lu Y., Xu W., Lu M., Pratt D., Chu S., Wernecke M., Macurdy T., Forshee R. Relative Effectiveness of Cell-Cultured and Egg-Based Influenza Vaccines Among Elderly Persons in the United States, 2017–2018. J. Infect. Dis., 2019, vol. 220, no. 8, pp. 1255–1264. doi: 10.1093/infdis/jiy716
  24. Katz J.M., Webster R.G. Efficacy of inactivated influenza A virus (H3N2) vaccines grown in mammalian cells or embryonated eggs. J. Infect. Dis., 1989, vol. 160, no. 2, pp. 191–198. doi: 10.1093/infdis/160.2.191
  25. Kiseleva I., Su Q., Toner T.J., Szymkowiak C., Kwan W.S., Rudenko L., Shaw A.R., Youil R. Cell-based assay for the determination of temperature sensitive and cold adapted phenotypes of influenza viruses. J. Virol. Methods, 2004, vol. 116, no. 1, pp. 71–78. doi: 10.1016/j.jviromet.2003.10.012
  26. Lanthier P.A., Huston G.E., Moquin A., Eaton S.M., Szaba F.M., Kummer L.W., Tighe M.P., Kohlmeier J.E., Blair P.J., Broderick M., Smiley S.T., Haynes L. Live attenuated influenza vaccine (LAIV) impacts innate and adaptive immune responses. Vaccine, 2011, vol. 29, no. 44, pp. 7849–7856. doi: 10.1128/mbio.01040-13
  27. Lee M.S., Hu A.Y. A cell-based backup to speed up pandemic influenza vaccine production. Trends Microbiol., 2012, vol. 20, no. 3, pp. 103–105. doi: 10.1016/j.tim.2011.12.002
  28. Liu J., Shi X., Schwartz R., Kemble G. Use of MDCK cells for production of live attenuated influenza vaccine. Vaccine, 2009, vol. 27, no. 46, pp. 6460–6463. doi: 10.1016/j.vaccine.2009.06.024
  29. Mahallawi W.H., Zhang Q. Live attenuated influenza vaccine induces broadly cross-reactive mucosal antibody responses to different influenza strains in tonsils. Saudi J. Biol. Sci., 2023, vol. 30, no. 10: 103809. doi: 10.1016/j.sjbs.2023.103809
  30. Manini I., Trombetta C.M., Lazzeri G., Pozzi T., Rossi S., Montomoli E. Egg-independent influenza vaccines and vaccine candidates. Vaccines, 2017, vol. 5, no. 3: 18. doi: 10.3390/vaccines5030018
  31. Montomoli E., Khadang B., Piccirella S., Trombetta C., Mennitto E., Manini I., Stanzani V., Lapini G. Cell culture-derived influenza vaccines from Vero cells: a new horizon for vaccine production. Expert Rev. Vaccines, 2012, vol. 11, no. 5, pp. 587–594. doi: 10.1586/erv.12.24
  32. Moro P.L., Winiecki S., Lewis P., Shimabukuro T.T., Cano M. Surveillance of adverse events after the first trivalent inactivated influenza vaccine produced in mammalian cell culture (Flucelvax®) reported to the Vaccine Adverse Event Reporting System (VAERS), United States, 2013–2015. Vaccine, 2015, vol. 33, no. 48, pp. 6684–6688. doi: 10.1016/j.vaccine.2015.10.084
  33. Morokutti A., Muster T., Ferko B. Intranasal vaccination with a replication-deficient influenza virus induces heterosubtypic neutralising mucosal IgA antibodies in humans. Vaccine, 2014, vol. 32, no. 17, pp. 1897–1900. doi: 10.1016/j.vaccine.2014.02.009
  34. Nechaeva E.A., Ryzhikov A.B., Pyankova O.G., Radaeva I.F., Pyankov O.V., Danilchenko N.V., Agafonov A.P., Kiseleva I.V., Larionova N.V., Rudenko L.G. Study of immunogenicity and protective efficacy of live MDCK-derived pandemic influenza vaccine. Glob. J. Infect. Dis. Clin. Res., 2019, vol. 5, no. 1, pp. 010–015. doi: 10.17352/2455-5363.000023
  35. Nechaeva E.A., Sen’kina T.Y., Ryzhikov A.B., Radaeva I.F., P’yankova O.G., Danil’chenko N.V., Sviridenko T.M., Bogryantzeva M.P., Gilina N.V., Varaksin N.A., Ryabicheva T.G., Kiseleva I.V., Rudenko L.G. Development of live cultural pandemic influenza vaccine Vector-Flu. BMC Proc., 2011, vol. 5, suppl. 8, p. 104. doi: 10.1186/1753-6561-5-S8-P104
  36. Palker T., Kiseleva I., Johnston K., Su Q., Toner T.J., Szymkowiak C., Kwan W.S., Rubin B., Petrukhin L., Wlochoski J., Monteiro J., Kraiouchkine N., Distefano D., Rudenko L., Shaw A.R. Protective efficacy of intranasal cold-adapted influenza A/New Caledonia/20/99 (H1N1) vaccines comprised of egg- or cell culture-derived reassortants. Virus Res., 2004, vol. 105, no. 2, pp. 183–194. doi: 10.1016/j.virusres.2004.05.009
  37. Robertson J.S., Cook P., Attwell A.M., Williams S.P. Replicative advantage in tissue culture of egg-adapted influenza virus over tissue-culture derived virus: implications for vaccine manufacture. Vaccine, 1995, vol. 13, no. 6, pp. 1583–1588. doi: 10.1016/0264-410x(95)00085-f
  38. Romanova J., Katinger D., Ferko B., Vcelar B., Sereinig S., Kuznetsov O., Stukova M., Erofeeva M., Kiselev O., Katinger H., Egorov A. Live cold-adapted influenza A vaccine produced in Vero cell line. Virus Res., 2004, vol. 103, no. 1–2, pp. 187–193. doi: 10.1016/j.virusres.2004.01.016
  39. Sasaki S., Holmes T.H., Albrecht R.A., García–Sastre A., Dekker C.L., He X.S., Greenberg H.B. Distinct cross-reactive B-cell responses to live attenuated and inactivated influenza vaccines. J. Infect. Dis., 2014, vol. 210, no. 6, pp. 865–874. doi: 10.1093/infdis/jiu190
  40. Shcherbik S., Pearce N., Kiseleva I., Larionova N., Rudenko L., Xu X., Wentworth D.E., Bousse T. Implementation of new approaches for generating conventional reassortants for live attenuated influenza vaccine based on Russian master donor viruses. J. Virol. Methods, 2016, vol. 227, pp. 33–39. doi: 10.1016/j.jviromet.2015.10.009
  41. Tapia F., Vazquez-Ramirez D., Genzel Y., Reichl U. Bioreactors for high cell density and continuous multi-stage cultivations: options for process intensification in cell culture-based viral vaccine production. Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 2121–2132. doi: 10.1007/s00253-015-7267-9
  42. Tree J.A., Richardson C., Fooks A.R., Clegg J.C., Looby D. Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains. Vaccine, 2001, vol. 19, pp. 3444–3450. doi: 10.1016/s0264-410x(01)00053-6
  43. Tsai T.F., Heidi T. Making influenza virus vaccines without using eggs. Patent of the USA No. US 2016/0193321 A1. Effective date for property rights 05.11.2015. Published 07.07.2016.
  44. Wacheck V., Egorov A., Groiss F., Pfeiffer A., Fuereder T., Hoeflmayer D., Kundi M., Popow-Kraupp T., Redlberger-Fritz M., Mueller C.A., Cinatl J., Michaelis M., Geiler J., Bergmann M., Romanova J., Roethl E., Morokutti A., Wolschek M., Ferko B., Seipelt J., Dick-Gudenus R., Muster T. A novel type of influenza vaccine: Safety and immunogenicity of replication-deficient influenza virus created by deletion of the interferon antagonist NS1. J. Infect. Dis., 2010, vol. 201, pp. 354–362. doi: 10.1086/649428
  45. Wareing M.D., Marsh G.A., Tannock G.A. Preparation and characterisation of attenuated cold-adapted influenza A reassortants derived from the A/Leningrad/134/17/57 donor strain. Vaccine, 2002, vol. 20, no. 16, pp. 2082–2090. doi: 10.1016/s0264-410x(02)00056-7
  46. WHO. 2006. Global action plan to increase vaccine supply for influenza vaccines. URL: http://whqlibdoc.who.int/hq/2006/WHO_IVB_06.13_eng.pdf
  47. WHO. 2018. 27 September 2018. Recommended composition of influenza virus vaccines for use in the 2019 southern hemisphere influenza season. URL: https://www.who.int/publications/m/item/recommended-composition-of-influenza-virus-vaccines-for-use-in-the-2019-southern-hemisphere-influenza-season
  48. Youil R., Kiseleva I., Kwan W.S., Szymkowiak C., Toner T.J., Su Q., Klimov A., Rudenko L., Shaw A.R. Phenotypic and genetic analyses of the heterogeneous population present in the cold-adapted master donor strain: A/Leningrad/134/17/57 (H2N2). Virus Res., 2004a, vol. 102, pp. 165–176. doi: 10.1016/j.virusres.2004.01.026
  49. Youil R., Su Q., Toner T.J., Szymkowiak C., Kwan W.S., Rubin B., Petrukhin L., Kiseleva I., Shaw A.R., Distefano D. Comparative study of influenza virus replication in Vero and MDCK cell lines. J. Virol. Methods, 2004b, vol. 120, pp. 23–31. doi: 10.1016/j.jviromet.2004.03.011

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Kiseleva I.V., Larionova N.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).