Neutrophil CD10 and CD16 as markers of generalized infection development in newborns

Cover Page

Cite item

Full Text

Abstract

BACKGROUND: Neonatal sepsis remains a critical concern. Thus, predictors of infection development and generalization should be determined.

AIM: This study aimed to determine novel neutrophil surface biomarkers for early prediction of the infections in newborns.

MATERIALS AND METHODS: This observational, single-center, prospective, selective, uncontrolled, unblinded experimental study included 261 newborns, with a mean postconceptual age of 38.7 (38.4–39.0) weeks and a mean gestation age of 38.0 (37.7–38.2) weeks. Blood samples were collected into vacutainers on hospitalization day 1. Patients were enrolled between April 2022 and December 2023. The primary endpoints were length of stay in the ICU and total length of hospitalization in patients with normal and decreased values of CD16 and CD10 neutrophils and HLA-DR monocytes. The expression of CD16 on CD62Lhigh neutrophils, total neutrophil CD10, and monocyte HLA-DR were evaluated by flow cytometry.

RESULTS: We assessed infants in the “control” (n = 96), “localized infection” (n = 95), and “generalized infection” (n = 70) subgroups. In all patients, a decrease in CD16 was associated with an increase in the median ICU stay from 4 to 8 days (p = 9.33 × 10–8) and total stay from 14 to 22 days (p = 1.58 × 10–7). A decrease in CD10 was associated with an increase in median ICU stay from 4 to 8 days (p = 3.01 × 10–6) and in the total stay from 14 to 19 days (p = 2.78 × 10–5). A decrease in monocytic HLA-DR was associated with a longer ICU and total hospital stay: 4 vs 8 days (p = 7.16 × 10–5) and 14 vs 21 days (p = 4.03 × 10–5), respectively. The median ICU stay in patients with a decrease in CD16 but normal CD10 was 4 days, whereas a decrease in both indicators was associated with prolonged hospital stay to 11 days (p = 2.13 × 10–5). The median hospital stay in patients with decreased CD16 but normal CD10 was 16 days, whereas the drop of both markers was related with increase of hospitalization stay to 23 days (p = 3.36 × 10–6). In the “localized infection” subgroup, low CD16 was associated with an increased median ICU stay from 4 to 6 days (p = 0.010) and the median hospital stay from 13 to 19 days (p = 4.14 × 10–4). In the “generalized infection” subgroup, decreased CD10 was related with prolongation of the median ICU stay from 7 to 11 days (p = 0.011) and the median total duration of hospitalization from 19 to 27 days (p = 0.037).

CONCLUSIONS: A decrease in CD10 and CD16 on the neutrophils at the start of clinical is an unfavorable prognostic factor of infectious and septic complications in newborns.

About the authors

Igor V. Obraztsov

Speransky Children’s City Clinical Hospital No. 9

Author for correspondence.
Email: obraztsoviv@zdrav.mos.ru
ORCID iD: 0000-0002-6649-853X
SPIN-code: 6466-5680

MD, Cand. Sci. (Medicine)

Russian Federation, 29 Shmitovskii av., Moscow, 123317

Anastasiia A. Obraztsova

Speransky Children’s City Clinical Hospital No. 9

Email: obraztsovaaa@zdrav.mos.ru

MD

Russian Federation, 29 Shmitovskii av., Moscow, 123317

Oksana V. Voronina

Speransky Children’s City Clinical Hospital No. 9

Email: tkachukviktor601@gmail.com
ORCID iD: 0009-0001-5942-2430

MD

Russian Federation, 29 Shmitovskii av., Moscow, 123317

Ekaterina A. Chernikova

Speransky Children’s City Clinical Hospital No. 9

Email: krasenkova.ea@gmail.com
ORCID iD: 0000-0001-9409-7832
SPIN-code: 6346-9181
Russian Federation, 29 Shmitovskii av., Moscow, 123317

Anastasiya Yu. Mishchenko

Speransky Children’s City Clinical Hospital No. 9

Email: nasta.tlt@mail.ru
ORCID iD: 0009-0003-1353-1441
SPIN-code: 4509-8053

MD

Russian Federation, 29 Shmitovskii av., Moscow, 123317

Maria A. Gordukova

Speransky Children’s City Clinical Hospital No. 9

Email: gordukovama@zdrav.mos.ru
ORCID iD: 0000-0002-3948-8491
SPIN-code: 2205-4033

MD, Cand. Sci. (Medicine)

Russian Federation, 29 Shmitovskii av., Moscow, 123317

Nataliia V. Davydova

Speransky Children’s City Clinical Hospital No. 9

Email: nata1902@yandex.ru
ORCID iD: 0000-0002-7325-6045
SPIN-code: 9997-6197

MD, Cand. Sci. (Medicine)

Russian Federation, 29 Shmitovskii av., Moscow, 123317

Julia V. Zhirkova

Speransky Children’s City Clinical Hospital No. 9; Pirogov Russian National Research Medical University

Email: zhirkova@mail.ru
ORCID iD: 0000-0001-7861-6778
SPIN-code: 5560-6679

MD, Dr. Sci. (Medicine), Associate Professor

Russian Federation, 29 Shmitovskii av., Moscow, 123317; 117513, Moscow, st. Ostrovityanova, house 1

Anatoly A. Korsunskiy

Speransky Children’s City Clinical Hospital No. 9; Sechenov First Moscow State Medical University

Email: dr_kaa@mail.ru
ORCID iD: 0000-0002-9087-1656
SPIN-code: 6374-0484

MD, Dr. Sci. (Medicine), Professor

Russian Federation, 29 Shmitovskii av., Moscow, 123317; 119991, Moscow, Bolshaya Pirogovskaya st., building 2, building 4

References

  1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287
  2. Shane AL, Sánchez PJ, Stoll BJ. Neonatal sepsis. Lancet. 2017;390(10104):1770–1780. doi: 10.1016/S0140-6736(17)31002-4
  3. Kalashnikova AA, Voroshilova TM. Evaluation of CD64 expression by blood neutrophils in the diagnosis of bacterial infections and sepsis. Handbook of the head of CDL. 2016;5:44–54. EDN WCKTVF (In Russ.)
  4. Eichberger J, Resch E, Resch B. Diagnosis of neonatal sepsis: the role of inflammatory markers. Front Pediatr. 2022;10:840288. doi: 10.3389/fped.2022.840288
  5. Muhin VE, Pankrat’eva LL, Yarcev MN, Volodin NN. Developmental adaptations of neonatal neutrophils (review). Russian Journal of Allergy. 2021;18(2):55–65. EDN: DQEFLW. doi: 10.36691/RJA1438
  6. Patent RU No. 2374646/ 27.11.09. Byul. No. 33. Dudareva MV, Lelik MP, Puhtinskaya MG. Method of early diagnosis of neonatal sepsis development in newborns with respiratory distress syndrome and hypoxic CNS damage. (In Russ.) [cited 2024 Aug 14]. Available from: https://patents.google.com/patent/RU2374646C1/ru
  7. Obraztsov IV, Obraztsova AA, Voronina OV, et al. Prediction of infectious and septic processes in newborns using the study of CD10 and CD16 neutrophils [proceedings] In: Collection of studies of young scientists competition in the framework of the conference “Current issues and innovative technologies in anesthesiology and resuscitation” (2024 April 5–6, Saint Petersburg). 2024. P. 10–14.
  8. Elghetany MT. Surface antigen changes during normal neutrophilic development: a critical review. Blood Cells Mol Dis. 2002;28(2):260–274. doi: 10.1006/bcmd.2002.0513
  9. Marini O, Costa S, Bevilacqua D, et al. Mature CD10+ and immature CD10– neutrophils present in G-CSF-treated donors display opposite effects on T cells [published correction appears in Blood. 2017;129(24):3271. doi: 10.1182/blood-2017-05-783423]. Blood. 2017;129(10):1343–1356. doi: 10.1182/blood-2016-04-713206
  10. Meng Y, Ye F, Nie P, et al. Immunosuppressive CD10+ALPL+ neutrophils promote resistance to anti-PD-1 therapy in HCC by mediating irreversible exhaustion of T cells. J Hepatol. 2023;79(6):1435–1449. doi: 10.1016/j.jhep.2023.08.024
  11. Kaneko T, Stearns-Kurosawa DJ, Taylor FJr, et al. Reduced neutrophil CD10 expression in nonhuman primates and humans after in vivo challenge with E. coli or lipopolysaccharide. Shock. 2003;20(2):130–137. doi: 10.1097/01.shk.0000068326.68761.34
  12. Liu M, Wang G, Wang L, et al. Immunoregulatory functions of mature CD10+ and immature CD10– neutrophils in sepsis patients. Front Med (Lausanne). 2023;9:1100756. doi: 10.3389/fmed.2022.1100756
  13. Liu J, Shi H, Yu J, Xiong J. CD10 is a good biomarker to predict bacterial infection in sepsis-suspected patients. Acta Med Mediterr. 2019;35:2851. doi: 10.19193/0393-6384_2019_5_448
  14. Muhin VE, Praulova DA, Pankrat’eva LL. Expression of Fc-gamma receptors of neutrophils in premature infants of different gestational ages. Current Pediatrics. 2016;15(3):273–278. EDN: WHHHTH doi: 10.15690/vsp.v15i3.1565
  15. Lakschevitz FS, Hassanpour S, Rubin A, et al. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342(2):200–209. doi: 10.1016/j.yexcr.2016.03.007
  16. Medara N, Lenzo JC, Walsh KA, et al. Peripheral neutrophil phenotypes during management of periodontitis. J Periodontal Res. 2021;56(1):58–68. doi: 10.1111/jre.12793
  17. Fraser JA, Kemp S, Young L, et al. Silver nanoparticles promote the emergence of heterogeneic human neutrophil sub-populations. Sci Rep. 2018;8(1):7506. doi: 10.1038/s41598-018-25854-2
  18. Zhang J, Gao C, Zhu Z, et al. New findings on CD16brightCD62Ldim neutrophil subtypes in sepsis-associated ARDS: an observational clinical study. Front Immunol. 2024;15:1331050. doi: 10.3389/fimmu.2024.1331050
  19. Dransfield I, Buckle AM, Savill JS, et al. Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J Immunol. 1994;153(3):1254–1263.
  20. Lu Y, Huang Y, Huang L, et al. CD16 expression on neutrophils predicts treatment efficacy of capecitabine in colorectal cancer patients. BMC Immunol. 2020;21(1):46. doi: 10.1186/s12865-020-00375-8
  21. Butcher SK, Chahal H, Nayak L, et al. Senescence in innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol. 2001;70(6):881–886.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Kaplan–Meier curves for ICU stay and total length of stay for patients with different CD16, CD10 and HLA-DR values. Censored events indicate unfavourable outcomes

Download (423KB)
3. Fig. 2. Distribution of HLA-DR, CD16 and CD10 among patients in groups

Download (123KB)
4. Fig. 3. Distribution of CD16 and CD10 scores among patients with different outcomes

Download (68KB)
5. Fig. 4. ROC curves for CD10 and CD16 depending on the outcome (a) and for CD10, CD16 and HLA-DR depending on the presence of generalized infection (b)

Download (126KB)

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».