Attractors of semigroups generated by a fnite family of contraction transformations of a complete metric space

封面

如何引用文章

全文:

详细

The present paper is devoted to the properties of semigroup dynamical systems $(G,X)$, where the semigroup $G$ is generated by a finite family of contracting transformations of the complete metric space $X$. It is proved that such dynamical systems $(G,X)$ always have a unique global attractor $\mathcal{A}$, which is a non-empty compact subset in $X$, with $\mathcal{A}$ being unique minimal set of the dynamical system $(G,X)$. It is shown that the dynamical system $(G,X)$ and the dynamical system $(G_{\mathcal{A}},\mathcal{A})$ obtained by restricting the action of $G$ to $\mathcal{A}$ both are not sensitive to the initial conditions. The global attractor $\mathcal{A}$ can have either a simple or a complex structure. The connectivity of the global attractor $\mathcal{A}$ is also studied.  A condition is found under which $\mathcal{A}$ is not a totally disconnected set. In particular, for semigroups $G$ generated by two one-to-one contraction mappings, a connectivity condition for the global attractor $\mathcal{A}$ is indicated. Also, sufficient conditions are obtained under which $\mathcal{A}$ is a Cantor set. Examples of global attractors of dynamical systems from the considered class are presented.

作者简介

Andrey Bagaev

National Research University «Higher School of
Economics»

编辑信件的主要联系方式.
Email: a.v.bagaev@gmail.com
ORCID iD: 0000-0001-5155-4175

 Ph. D. (Phys.-Math.), Associate Professor, Department
of Fundamental Mathematics
 

25/12 B. Pecherskaya St., Nizhny Novgorod 603155, Russia

参考

  1. E. Kontorovich, M. Megrelishvili, "A note on sensitivity of semigroup actions", Semigroup Forum, 76:1 (2008), 133–141. DOI: https://doi.org/10.1007/s00233-007-9033-5.
  2. F. M. Schneider, S. Kerkhoff, M. Behrisch, S. Siegmund, "Chaotic actions of topological semigroups", Semigroup Forum, 87 (2013), 590–598.
  3. J. Iglesias, A. Portela, "Almost open semigroup actions", Semigroup Forum, 98 (2019), 261–270. DOI: https://doi.org/10.1007/s00233-018-9936-3.
  4. A. Nagar, M. Singh, Topological dynamics of enveloping semigroups, Springer, Singapore, 2023, 87 p.
  5. N. I. Zhukova, "Sensitivity and chaoticity of some classes of semigroup actions", Regular and Chaotic Dynamics, 29:1 (2024), 174–189. DOI: https://doi.org/10.1134/S1560354724010118.
  6. R. M. Crownover, Introduction to fractals and chaos, Postmarket Publ., Moscow, 2000, 352 p.
  7. M. F. Barnsley, Fractals everywhere, Academic Press, Boston, 1988, 394 p.
  8. J. E. Hutchinson, "Fractals and self-similarity", Indiana University Mathematics Journal, 30 (1981), 713–747.
  9. K. J. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley and Sons, New York, 2014, 400 p.
  10. M. Yamaguti, M. Hata, J. Kigami, Translations of Mathematical Monographs. Mathematics of Fractals, 167, American Mathematical Society, Providence, RI, 1997 DOI: https://doi.org/10.1090/mmono/167, 96 p.
  11. N. I. Zhukova, "Minimal Sets of Cartan Foliations", Proceedings of the Steklov Institute of Mathematics, 256:1 (2007), 105–135 (In Russ.).
  12. A. V. Bagaev, A. V. Kiseleva, "On multidimensional analogs of the Sierpinski triangle", XXVI International Scientific and Technical Conference guillemotleft Information Systems and Technologies-2020guillemotright : Proceedings, Nizhny Novgorod state technical university n.a. R.E. Alekseev, N. Novgorod, 2020, 1148–1152 (In Russ.).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Bagaev A., 2024

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).