Attractors of semigroups generated by a fnite family of contraction transformations of a complete metric space

Cover Page

Cite item

Full Text

Abstract

The present paper is devoted to the properties of semigroup dynamical systems $(G,X)$, where the semigroup $G$ is generated by a finite family of contracting transformations of the complete metric space $X$. It is proved that such dynamical systems $(G,X)$ always have a unique global attractor $\mathcal{A}$, which is a non-empty compact subset in $X$, with $\mathcal{A}$ being unique minimal set of the dynamical system $(G,X)$. It is shown that the dynamical system $(G,X)$ and the dynamical system $(G_{\mathcal{A}},\mathcal{A})$ obtained by restricting the action of $G$ to $\mathcal{A}$ both are not sensitive to the initial conditions. The global attractor $\mathcal{A}$ can have either a simple or a complex structure. The connectivity of the global attractor $\mathcal{A}$ is also studied.  A condition is found under which $\mathcal{A}$ is not a totally disconnected set. In particular, for semigroups $G$ generated by two one-to-one contraction mappings, a connectivity condition for the global attractor $\mathcal{A}$ is indicated. Also, sufficient conditions are obtained under which $\mathcal{A}$ is a Cantor set. Examples of global attractors of dynamical systems from the considered class are presented.

About the authors

Andrey Bagaev

National Research University «Higher School of
Economics»

Author for correspondence.
Email: a.v.bagaev@gmail.com
ORCID iD: 0000-0001-5155-4175

 Ph. D. (Phys.-Math.), Associate Professor, Department
of Fundamental Mathematics
 

25/12 B. Pecherskaya St., Nizhny Novgorod 603155, Russia

References

  1. E. Kontorovich, M. Megrelishvili, "A note on sensitivity of semigroup actions", Semigroup Forum, 76:1 (2008), 133–141. DOI: https://doi.org/10.1007/s00233-007-9033-5.
  2. F. M. Schneider, S. Kerkhoff, M. Behrisch, S. Siegmund, "Chaotic actions of topological semigroups", Semigroup Forum, 87 (2013), 590–598.
  3. J. Iglesias, A. Portela, "Almost open semigroup actions", Semigroup Forum, 98 (2019), 261–270. DOI: https://doi.org/10.1007/s00233-018-9936-3.
  4. A. Nagar, M. Singh, Topological dynamics of enveloping semigroups, Springer, Singapore, 2023, 87 p.
  5. N. I. Zhukova, "Sensitivity and chaoticity of some classes of semigroup actions", Regular and Chaotic Dynamics, 29:1 (2024), 174–189. DOI: https://doi.org/10.1134/S1560354724010118.
  6. R. M. Crownover, Introduction to fractals and chaos, Postmarket Publ., Moscow, 2000, 352 p.
  7. M. F. Barnsley, Fractals everywhere, Academic Press, Boston, 1988, 394 p.
  8. J. E. Hutchinson, "Fractals and self-similarity", Indiana University Mathematics Journal, 30 (1981), 713–747.
  9. K. J. Falconer, Fractal geometry: mathematical foundations and applications, John Wiley and Sons, New York, 2014, 400 p.
  10. M. Yamaguti, M. Hata, J. Kigami, Translations of Mathematical Monographs. Mathematics of Fractals, 167, American Mathematical Society, Providence, RI, 1997 DOI: https://doi.org/10.1090/mmono/167, 96 p.
  11. N. I. Zhukova, "Minimal Sets of Cartan Foliations", Proceedings of the Steklov Institute of Mathematics, 256:1 (2007), 105–135 (In Russ.).
  12. A. V. Bagaev, A. V. Kiseleva, "On multidimensional analogs of the Sierpinski triangle", XXVI International Scientific and Technical Conference guillemotleft Information Systems and Technologies-2020guillemotright : Proceedings, Nizhny Novgorod state technical university n.a. R.E. Alekseev, N. Novgorod, 2020, 1148–1152 (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bagaev A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).