Модифицированный проекционный обобщённый двухточечный двухэтапный экстраградиентный квазиньютоновский метод решения седловых задач

Обложка

Цитировать

Полный текст

Аннотация

Цель работы состоит в полном исследовании нового, указанного в заголовке статьи метода, предназначенного для решения седловой задачи с выпукло-вогнутой непрерывно дифференцируемой седловой функцией, определенной на выпуклом замкнутом подмножестве конечномерного евклидова пространства и имеющей “овражные” гиперповерхности уровней. В статье приведен краткий обзор отечественных публикаций об исследовании новых проекционных градиентных методов решения седловой задачи, содержится описание и математическая постановка седловой задачи, сведения о методе решения задачи, некоторые необходимые вспомогательные неравенства, доказательство сходимости и оценок скорости сходимости метода. Так же приведены итерационные формулы еще одного перспективного метода решения седловых задач для выпукло вогнутых дифференцируемых функций, обоснование которого может быть проведено аналогично данному для исследованного в статье метода. Новые вспомогательные неравенства, представляющие самостоятельную ценность также и для обоснования других методов исследования операций, дополняют необходимый для обоснования сходимости и оценки скорости сходимости седлового метода математический аппарат выпуклого анализа. С помощью приведённых вспомогательных неравенств и инструментария выпуклого анализа, сначала доказана сходимость седлового метода для выпукло-вогнутых гладких функций с Липшицевыми частными градиентами. При дополнительных условиях, для дважды непрерывно дифференцируемых седловых функций, доказаны и сверхлинейная, и квадратичная скорости сходимости седлового метода. 

Полный текст

1.      Введение

В интенсивно развивающемся разделе вычислительной математики востребованы как непрерывные, так и итеративные методы решения седловых и равновесных задач. Мы рассматриваем итеративные проекционные методы отыскания седловых точек (ИПМОСТ). Напомним, что по определению, для всякой функции φ(x,y) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyEaiaaiMcaaaa@3BCA@ , xQ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI Giolaadgfaaaa@394E@ , uU MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI Giolaadwfaaaa@394F@ , с непустыми выпуклыми и замкнутыми множествами Q E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgk OimlaadweadaahaaWcbeqaaiaad6gaaaaaaa@3AB3@  и U E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabgk OimlaadweadaahaaWcbeqaaiaad2gaaaaaaa@3AB6@ , в евклидовых пространствах E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamOBaaaaaaa@37E1@  и E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamyBaaaaaaa@37E0@ , точку ( x * , u * )Q×U E n × E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcacqGHiiIZcaWGrbGaey41aqRaamyvaiabgkOiml aadweadaahaaWcbeqaaiaad6gaaaGccqGHxdaTcaWGfbWaaWbaaSqa beaacaWGTbaaaaaa@491A@ , называют седловой точкой функции, если эта точка есть решение системы неравенств

φ( x * ,u)φ( x * , u * )φ(x, u * )xQ,uU. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDaiaaiMca cqGHKjYOcqaHgpGAcaaIOaGaamiEamaaCaaaleqabaGaaGOkaaaaki aaiYcacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiabgsMiJkab eA8aQjaaiIcacaWG4bGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaa GccaaIPaGaaGjbVlaaysW7cqGHaiIicaWG4bGaeyicI4Saamyuaiaa iYcacaWG1bGaeyicI4Saamyvaiaai6caaaa@5A81@ (1.1)

 Седловой задачей называют задачу отыскания седловой точки. Седловым методом называют метод численного решения седловой задачи.

Известно, что к решению седловой задачи приводят экстремальные задачи математической физики, теории игр, математической экономики, оптимального управления и другие. Часто ИПМОСТ строятся на основе известных методов оптимизации (см., например, [1] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  [9]). В работах [1] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  [3], [7] имеются обзоры, в [8] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  [11] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  краткие обзоры, публикаций об исследовании методов решения седловых задач.

Простейший ИПМОСТ MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  это известный метод проекции градиента (МПГ) седловой, который решает для выпукло-вогнутых гладких функций φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@  седловые задачи с хорошими (“неовражными”) гиперповерхностями уровней.

В связи с нуждами решения седловых задач науки и приложений, разрабатываются и обосновываются высокоскоростные методы их решения для седловых функций с “овражными” гиперповерхностями уровней. Методы переменной метрики (МПМ) для задач минимизации “овражных” функций характеризуются хорошей локальной скоростью сходимости, и при их реализации для седловых функций с овражными гиперповерхностями уровней ожидаются преимущества перед другими седловыми методами (см., например, [7], [11]) (хотя бы в случаях не самых сложных “оврагов” седловых функций).

Ввиду этого на основе идеи непрерывного "овражного" МПГ первого порядка с переменной метрикой (НМПГПМ) для задач минимизации, предложенного в работе [4], построен, авторами работы [4] и их учениками, ряд методов сначала для решения задач минимизации, затем равновесных. Например, в работе [5] исследован НМПГПМ второго порядка для решения "овражных" задач минимизации функции f(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3944@ , отличающийся от метода первого порядка из работы [4] дифференциальным оператором второго порядка. Доказана сходимость этого метода, а также двух регуляризованных версий метода для решения неустойчивых задач минимизации. В [4], [5] использован оператор проектирования P Q G(x(t)) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaDa aaleaacaWGrbaabaGaam4raiaaiIcacaWG4bGaaGikaiaadshacaaI PaGaaGykaaaaaaa@3D5B@  в переменной метрике G(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4raiaaiI cacaWG4bGaaGykaaaa@3925@ , в гильбертовом пространстве H MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamisaaaa@36C4@ . Метрика определена скалярным произведением G(x(t))y,y MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGhbGaaGikaiaadIhacaaIOaGaamiDaiaaiMcacaaIPaGaamyEaiaa iYcacaWG5baacaGLOaGaayzkaaaaaa@3FBE@ ,   x,yH MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadIhacaaISaGaamyEaiabgIGiolaadIeaaaa@3D56@ .

В работе [6] идея использования переменной метрики из [4] продолжена с дифференциального на итеративный метод минимизации функций с гиперповерхностями уровней “овражной структуры”, а именно, на предложенный в [6] проекционный обобщённый двухточечный двухэтапный экстраградиентный метод квазиньютоновский (ПОДЭМК) минимизации “овражных” функций f(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3944@ , с оператором P Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGrbaabeaaaaa@37CE@  проектирования на выпуклое замкнутое множество Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@  в исходной метрике евклидова пространства E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamOBaaaaaaa@37E1@ .

Мы исследуем в этой работе ИПМОСТ для “овражных” седловых функций φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@  с операторами P Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGrbaabeaaaaa@37CE@  и P U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGvbaabeaaaaa@37D2@  проектирования на выпуклые замкнутые множества Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@  и U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D1@  в исходной метрике евклидовых пространств E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamOBaaaaaaa@37E1@  и E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamyBaaaaaaa@37E0@ . В работе [7] предложен и исследован ИПМОСТ для “овражной” седловой функции φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@ , (x,u)Q×U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hacaaISaGaamyDaiaaiMcacqGHiiIZcaWGrbGaey41aqRaamyvaaaa @3F54@ , построенный на основе ПОДЭМК минимизации из [6], так называемый ПОДЭМК седловой (ПОДЭМКС), доказана его сходимость и линейная скорость сходимости для выпукло-вогнутых седловых функций, без предположения о сильной выпукло-вогнутости седловой функции.

В работах [8] MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ [10] были исследованы другие итеративные методы решения седловых и равновесных задач; в [11] исследован непрерывный проекционный обобщённый экстраградиентный квазиньютоновский метод второго порядка для решения седловых задач; доказана его сходимость и экспоненциальная скорость сходимости для выпукло-вогнутых функций.

Целью предлагаемой работы является исследование ПОДЭМКС модифицированного (ПОДЭМКСМ), построенного на основе ПОДЭМКС из работы [7], для решения седловой задачи (1.1) со сложными функциями φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@ , имеющими “овражные” гиперповерхности уровней. Для ПОДЭМКСМ доказана сходимость для выпукло-вогнутых функций с Липшицевыми частными градиентами и сверхлинейная, и квадратичная, скорости сходимости для дважды непрерывно дифференцируемых седловых функций, при дополнительных условиях.

Сформулируем математическую постановку седловой задачи. Cедловые задачи для конкретных математических моделей решаются при своих требованиях (к пространствам, множествам и функциям), выражающихся в постановке задачи и влияющих на метод её решения; мы здесь предполагаем следующие:

а) Пусть множества Q E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgk OimlaadweadaahaaWcbeqaaiaad6gaaaaaaa@3AB3@ , U E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabgk OimlaadweadaahaaWcbeqaaiaad2gaaaaaaa@3AB6@ , Q×U E n × E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgE na0kaadwfacqGHckcZcaWGfbWaaWbaaSqabeaacaWGUbaaaOGaey41 aqRaamyramaaCaaaleqabaGaamyBaaaaaaa@41AE@  непустые выпуклые и замкнутые;

б) выпукло-вогнутая функция φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@  с "овражными" гиперповерхностями уровней определена на множестве W=Q×U E n × E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiaai2 dacaWGrbGaey41aqRaamyvaiabgkOimlaadweadaahaaWcbeqaaiaa d6gaaaGccqGHxdaTcaWGfbWaaWbaaSqabeaacaWGTbaaaaaa@4351@  выпукла по xQ E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaadgfacqGHckcZcaWGfbWaaWbaaSqabeaacaWGUbaaaaaa@3D34@ , и вогнута по uU E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI GiolaadwfacqGHckcZcaWGfbWaaWbaaSqabeaacaWGTbaaaaaa@3D34@ , то есть для всех фиксированных uU MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiabgI Giolaadwfaaaa@394F@  функция g(x)=φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaiaai2dacqaHgpGAcaaIOaGaamiEaiaaiYcacaWG 1bGaaGykaaaa@3FDB@  выпукла на Q E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgk OimlaadweadaahaaWcbeqaaiaad6gaaaaaaa@3AB3@ , а xQ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaam iEaiabgIGiolaadgfaaaa@3A1E@  фиксированного функция h(u)=φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG1bGaaGykaiaai2dacqaHgpGAcaaIOaGaamiEaiaaiYcacaWG 1bGaaGykaaaa@3FD9@  вогнута на U E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaiabgI GiolaadweadaahaaWcbeqaaiaad2gaaaaaaa@3A3E@ ;

в) множество седловых точек ( x * , u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcaaaa@3BDF@  функции φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@  на W E n × E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vaiabgk OimlaadweadaahaaWcbeqaaiaad6gaaaGccqGHxdaTcaWGfbWaaWba aSqabeaacaWGTbaaaaaa@3EC3@  непусто, W * = Q * × U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4vamaaBa aaleaacaaIQaaabeaakiaai2dacaWGrbWaaSbaaSqaaiaaiQcaaeqa aOGaey41aqRaamyvamaaCaaaleqabaGaaGOkaaaakiabgcMi5kabgw Gigdaa@4160@ ;

г) частные градиенты функции φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@  Липшицевы на Q×U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaiabgE na0kaadwfaaaa@39BE@ :

φ x (x,u) φ x (x',u)Lxx',uU,x,x'Q; φ u (x,u) φ u (x,u') L 0 uu',xQ,u,u'U, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjabgEGirlabeA8aQnaa BaaaleaacaWG4baabeaakiaaiIcacaWG4bGaaGilaiaadwhacaaIPa GaeyOeI0Iaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGik aiaadIhacaaINaGaaGilaiaadwhacaaIPaGae8xjIaLaeyizImQaam itaiab=vIiqjaadIhacqGHsislcaWG4bGaaG4jaiab=vIiqjaaiYca caaMf8UaamyDaiabgIGiolaadwfacaaISaGaaGjbVlaadIhacaaISa GaamiEaiaaiEcacqGHiiIZcaWGrbGaaG4oaaqaaiab=vIiqjabgEGi rlabeA8aQnaaBaaaleaacaWG1baabeaakiaaiIcacaWG4bGaaGilai aadwhacaaIPaGaeyOeI0Iaey4bIeTaeqOXdO2aaSbaaSqaaiaadwha aeqaaOGaaGikaiaadIhacaaISaGaamyDaiaaiEcacaaIPaGae8xjIa LaeyizImQaamitamaaCaaaleqabaGaaGimaaaakiab=vIiqjaadwha cqGHsislcaWG1bGaaG4jaiab=vIiqjaaiYcacaaMf8UaamiEaiabgI GiolaadgfacaaISaGaaGjbVlaadwhacaaISaGaamyDaiaaiEcacqGH iiIZcaWGvbGaaGilaaaaaaa@92A9@ (1.2)

 где L>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitaiaai6 dacaaIWaaaaa@384A@ , L 0 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamitamaaCa aaleqabaGaaGimaaaakiaai6dacaaIWaaaaa@393B@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  константы Липшица, φ x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaeq OXdO2aaSbaaSqaaiaadIhaaeqaaaaa@3A63@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  частный градиент, 2 φ xx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaW baaSqabeaacaaIYaaaaOGaeqOXdO2aaSbaaSqaaiaadIhacaWG4baa beaaaaa@3C53@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  гессиан по первому аргументу, φ u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaeq OXdO2aaSbaaSqaaiaadwhaaeqaaaaa@3A60@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  частный градиент, 2 φ uu MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIe9aaW baaSqabeaacaaIYaaaaOGaeqOXdO2aaSbaaSqaaiaadwhacaWG1baa beaaaaa@3C4D@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  гессиан по второму аргументу. Скаляры индексы xx MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiaadI haaaa@37F1@  и uu MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaadw haaaa@37EB@  означают индексы для элементов матриц Гессе, соответственно, x i x j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaBa aaleaacaWGPbaabeaakiaadIhadaWgaaWcbaGaamOAaaqabaaaaa@3A30@ , i[1:n] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgI GiolaaiUfacaaIXaGaaGOoaiaad6gacaaIDbaaaa@3CA7@ , j[1:n] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgI GiolaaiUfacaaIXaGaaGOoaiaad6gacaaIDbaaaa@3CA8@ , u i u j MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaBa aaleaacaWGPbaabeaakiaadwhadaWgaaWcbaGaamOAaaqabaaaaa@3A2A@ , i[1:m] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyAaiabgI GiolaaiUfacaaIXaGaaGOoaiaad2gacaaIDbaaaa@3CA6@ , j[1:m] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOAaiabgI GiolaaiUfacaaIXaGaaGOoaiaad2gacaaIDbaaaa@3CA7@ .

 В терминах оператора проектирования седловая точка ( x * , u * ) W * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcacqGHiiIZcaWGxbWaaSbaaSqaaiaaiQcaaeqaaa aa@3F1F@  задачи (1.1) характеризуется равенствами [3]

x * = P Q x * τ φ x ( x * , u * ) , u * = P U u * τ φ u ( x * , u * ) ,τ>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOkaaaakiaai2dacaWGqbWaaSbaaSqaaiaadgfaaeqa aOWaamWaaeaacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0Iaeq iXdqNaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGikaiaa dIhadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqaba GaaGOkaaaakiaaiMcaaiaawUfacaGLDbaacaaISaGaaGzbVlaadwha daahaaWcbeqaaiaaiQcaaaGccaaI9aGaamiuamaaBaaaleaacaWGvb aabeaakmaadmaabaGaamyDamaaCaaaleqabaGaaGOkaaaakiabgkHi Tiabes8a0jabgEGirlabeA8aQnaaBaaaleaacaWG1baabeaakiaaiI cacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaaGilaiaadwhadaahaaWc beqaaiaaiQcaaaGccaaIPaaacaGLBbGaayzxaaGaaGilaiaaywW7cq aHepaDcaaI+aGaaGimaiaaiYcaaaa@696B@ (1.3)

 где P Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGrbaabeaaaaa@37CE@  и P U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiuamaaBa aaleaacaWGvbaabeaaaaa@37D2@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  операторы проектирования на множества Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyuaaaa@36CD@  и U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyvaaaa@36D1@ .

2.      Метод решения задачи

Схема решение задачи (1.1)-(1.3) ПОДЭМКСМ строится следующим образом:

пусть( x 0 , u 0 ),( x 1 , u 0 ),( x 1 , u 1 ) E n × E m начальныеточкитакие,что φ( x 0 , u 0 )>φ( x 1 , u 0 ),φ( x 1 , u 0 )<φ( x 1 , u 1 ); Iэтап: y k = x k x k1 , v k = u k u k1 , z k = P Q x k + α k y k , w k = P U u k + α k v k ; IIэтап: x k+1 = P Q z k β k A k 1 φ x ( z k , u k ) , u k+1 = P U w k + λ k B k 1 φ u ( x k+1 , w k ) ,k1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabyqaaa aabaGaaGjcVlaad+dbcaWGdrGaamyqeiaadkebcaWGmrGaaGjcVlaa ykW7caaMc8UaaGikaiaadIhadaahaaWcbeqaaiaaicdaaaGccaaISa GaamyDamaaCaaaleqabaGaaGimaaaakiaaiMcacaaISaGaaGikaiaa dIhadaahaaWcbeqaaiaaigdaaaGccaaISaGaamyDamaaCaaaleqaba GaaGimaaaakiaaiMcacaaISaGaaGikaiaadIhadaahaaWcbeqaaiaa igdaaaGccaaISaGaamyDamaaCaaaleqabaGaaGymaaaakiaaiMcacq GHiiIZcaWGfbWaaWbaaSqabeaacaWGUbaaaOGaey41aqRaamyramaa CaaaleqabaGaamyBaaaakiabgkHiTiaaysW7caaMi8Uaamypeiaadc dbcaWGhrGaamimeiaadUdbcaWGmrGaamypeiaadUebcaWG1qGaaGjb VlaadkebcaWG+qGaam4reiaadQdbcaWG4qGaaGjbVlaadkebcaWGWq GaamOoeiaadIdbcaWG1qGaaGilaiaaysW7caWGhrGaamOqeiaad6db caaMi8oabaGaeqOXdOMaaGikaiaadIhadaahaaWcbeqaaiaaicdaaa GccaaISaGaamyDamaaCaaaleqabaGaaGimaaaakiaaiMcacaaI+aGa eqOXdOMaaGikaiaadIhadaahaaWcbeqaaiaaigdaaaGccaaISaGaam yDamaaCaaaleqabaGaaGimaaaakiaaiMcacaaISaGaaGzbVlabeA8a QjaaiIcacaWG4bWaaWbaaSqabeaacaaIXaaaaOGaaGilaiaadwhada ahaaWcbeqaaiaaicdaaaGccaaIPaGaaGipaiabeA8aQjaaiIcacaWG 4bWaaWbaaSqabeaacaaIXaaaaOGaaGilaiaadwhadaahaaWcbeqaai aaigdaaaGccaaIPaGaaG4oaaqaaiaabMeacaaMc8UaaGPaVlaab2eb caqGcrGaaeimeiaab+dbcaqG6aGaaGzbVlaadMhadaahaaWcbeqaai aadUgaaaGccaaI9aGaamiEamaaCaaaleqabaGaam4AaaaakiabgkHi TiaadIhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaaGilai aaywW7caWG2bWaaWbaaSqabeaacaWGRbaaaOGaaGypaiaadwhadaah aaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaWGRb GaeyOeI0IaaGymaaaakiaaiYcaaeaacaWG6bWaaWbaaSqabeaacaWG RbaaaOGaaGypaiaadcfadaWgaaWcbaGaamyuaaqabaGcdaqadaqaai aadIhadaahaaWcbeqaaiaadUgaaaGccqGHRaWkcqaHXoqydaWgaaWc baGaam4AaaqabaGccaWG5bWaaWbaaSqabeaacaWGRbaaaaGccaGLOa GaayzkaaGaaGilaiaaywW7caWG3bWaaWbaaSqabeaacaWGRbaaaOGa aGypaiaadcfadaWgaaWcbaGaamyvaaqabaGcdaqadaqaaiaadwhada ahaaWcbeqaaiaadUgaaaGccqGHRaWkcqaHXoqydaWgaaWcbaGaam4A aaqabaGccaWG2bWaaWbaaSqabeaacaWGRbaaaaGccaGLOaGaayzkaa GaaG4oaaqaaiaabMeacaqGjbGaaGPaVlaaykW7caqGnrGaaeOqeiaa bcdbcaqG=qGaaeOoaiaaywW7caWG4bWaaWbaaSqabeaacaWGRbGaey 4kaSIaaGymaaaakiaai2dacaWGqbWaaSbaaSqaaiaadgfaaeqaaOWa aeWaaeaacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaeqOSdi 2aaSbaaSqaaiaadUgaaeqaaOGaamyqamaaDaaaleaacaWGRbaabaGa eyOeI0IaaGymaaaakiabgEGirlabeA8aQnaaBaaaleaacaWG4baabe aakiaaiIcacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwha daahaaWcbeqaaiaadUgaaaGccaaIPaaacaGLOaGaayzkaaGaaGilaa qaaiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGyp aiaadcfadaWgaaWcbaGaamyvaaqabaGcdaqadaqaaiaadEhadaahaa WcbeqaaiaadUgaaaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaam4Aaaqa baGccaWGcbWaa0baaSqaaiaadUgaaeaacqGHsislcaaIXaaaaOGaey 4bIeTaeqOXdO2aaSbaaSqaaiaadwhaaeqaaOGaaGikaiaadIhadaah aaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGilaiaadEhadaahaa WcbeqaaiaadUgaaaGccaaIPaaacaGLOaGaayzkaaGaaGilaiaaywW7 caWGRbGaeyyzImRaaGymaiaaiYcaaaaaaa@2511@ (2.1)

 где α k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadUgaaeqaaaaa@38B2@ , β k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadUgaaeqaaaaa@38B4@ , λ k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgaaeqaaaaa@38C7@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  положительные параметры метода; при каждом фиксированном x E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaiabgI GiolaadweadaahaaWcbeqaaiaad6gaaaaaaa@3A62@   A(x): E n E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGykaiaaiQdacaaMe8UaamyramaaCaaaleqabaGaamOB aaaakiabgkziUkaadweadaahaaWcbeqaaiaad6gaaaaaaa@413B@  и u E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jcVlaadwhacqGHiiIZcaWGfbWaaWbaaSqabeaacaWGTbaaaaaa@3CBF@  фиксированном B(u): E m E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaaiI cacaWG1bGaaGykaiaaiQdacaaMe8UaamyramaaCaaaleqabaGaamyB aaaakiabgkziUkaadweadaahaaWcbeqaaiaad2gaaaaaaa@4137@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  положительно определённые самосопряженные операторы, изменяющие метрику пространства.

Оператор A(x)x E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqaiaaiI cacaWG4bGaaGykaiaaysW7cqGHaiIicaaMe8UaamiEaiabgIGiolaa dweadaahaaWcbeqaaiaad6gaaaaaaa@4174@  (в (2.1) A k =A( z k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGRbaabeaakiaai2dacaWGbbGaaGikaiaadQhadaahaaWc beqaaiaadUgaaaGccaaIPaaaaa@3CFB@  ), и оператор B(u)u E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqaiaaiI cacaWG1bGaaGykaiaaysW7cqGHaiIicaaMe8UaamyDaiabgIGiolaa dweadaahaaWcbeqaaiaad2gaaaaaaa@416E@  (в (2.1) B k =B( w k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGRbaabeaakiaai2dacaWGcbGaaGikaiaadEhadaahaaWc beqaaiaadUgaaaGccaaIPaaaaa@3CFA@  ) таковы, что:

                 mv 2 (A(x)v,v)Mv 2 ,0<mM,v,xQ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaebbfv 3ySLgzGueE0jxyaGqbaiab=vIiqjaadAhacqWFLicudaahaaWcbeqa aiaaikdaaaGccqGHKjYOcaaIOaGaamyqaiaaiIcacaWG4bGaaGykai aadAhacaaISaGaamODaiaaiMcacqGHKjYOcaWGnbGae8xjIaLaamOD aiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMf8UaaGimai aaiYdacaWGTbGaeyizImQaamytaiaaiYcacaaMe8UaamODaiaaiYca caWG4bGaeyicI4SaamyuaiaaiYcaaaa@5E84@ (2.2)

pv 2 (B(u)v,v)Pv 2 ,0<pP,v,uU. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiCaebbfv 3ySLgzGueE0jxyaGqbaiab=vIiqjaadAhacqWFLicudaahaaWcbeqa aiaaikdaaaGccqGHKjYOcaaIOaGaamOqaiaaiIcacaWG1bGaaGykai aadAhacaaISaGaamODaiaaiMcacqGHKjYOcaWGqbGae8xjIaLaamOD aiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMf8UaaGimai aaiYdacaWGWbGaeyizImQaamiuaiaaiYcacaaMe8UaamODaiaaiYca caWG1bGaeyicI4Saamyvaiaai6caaaa@5E91@ (2.3)

 Обратные операторы таковы, что

v 2 /M( A 1 (x)v,v)v 2 /m,v,xQ; v 2 /P( B 1 (u)v,v)v 2 /p,v,uU. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadAhacqWFLicudaah aaWcbeqaaiaaikdaaaGccaaIVaGaamytaiabgsMiJkaaiIcacaWGbb WaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaadIhacaaIPaGa amODaiaaiYcacaWG2bGaaGykaiabgsMiJkab=vIiqjaadAhacqWFLi cudaahaaWcbeqaaiaaikdaaaGccaaIVaGaamyBaiaaiYcacaaMf8Ua amODaiaaiYcacaWG4bGaeyicI4SaamyuaiaaiUdaaeaacqWFLicuca WG2bGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaG4laiaadcfacqGH KjYOcaaIOaGaamOqamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiI cacaWG1bGaaGykaiaadAhacaaISaGaamODaiaaiMcacqGHKjYOcqWF LicucaWG2bGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaG4laiaadc hacaaISaGaaGzbVlaadAhacaaISaGaamyDaiabgIGiolaadwfacaaI Uaaaaaaa@7AC2@ (2.4)

 Для ПОДЭМКС (2.1) характеристики (1.3) седловой точки запишутся в виде

x * = P Q x * β A 1 ( x * ) φ x ( x * , u * ) ,β>0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOkaaaakiaai2dacaWGqbWaaSbaaSqaaiaadgfaaeqa aOWaamWaaeaacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0Iaeq OSdiMaamyqamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaWG 4bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiabgEGirlabeA8aQnaaBa aaleaacaWG4baabeaakiaaiIcacaWG4bWaaWbaaSqabeaacaaIQaaa aOGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaaacaGLBb GaayzxaaGaaGilaiaaywW7cqaHYoGycaaI+aGaaGimaiaaiYcaaaa@575C@ (2.5)

u * = P U u * +λ B 1 ( u * ) φ u ( x * , u * ) ,λ>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaai2dacaWGqbWaaSbaaSqaaiaadwfaaeqa aOWaamWaaeaacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaey4kaSIaeq 4UdWMaamOqamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaWG 1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiabgEGirlabeA8aQnaaBa aaleaacaWG1baabeaakiaaiIcacaWG4bWaaWbaaSqabeaacaaIQaaa aOGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaaacaGLBb GaayzxaaGaaGilaiaaywW7cqaH7oaBcaaI+aGaaGimaiaai6caaaa@5772@ (2.6)

 Замечание 2.1. Отметим, что критерии проекций по первой и второй переменным соответственно будут по евклидовой исходной метрике (см. [13], с. 189):

(wv,zw)0,zQ,(wv,uw)0,uU, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadE hacqGHsislcaWG2bGaaGilaiaadQhacqGHsislcaWG3bGaaGykaiab gwMiZkaaicdacaaISaGaaGjbVlaaykW7caWG6bGaeyicI4Saamyuai aaiYcacaaMf8UaaGikaiaadEhacqGHsislcaWG2bGaaGilaiaadwha cqGHsislcaWG3bGaaGykaiabgwMiZkaaicdacaaISaGaaGjbVlaayk W7caWG1bGaeyicI4SaamyvaiaaiYcaaaa@5C07@ (2.7)

 а при использовании в (2.1) операторов проектирования в новой метрике критериями проекций были бы неравенства

(A(z)(wv),xw)0,xQ,(B(z)(wv),uw)0,uU, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadg eacaaIOaGaamOEaiaaiMcacaaIOaGaam4DaiabgkHiTiaadAhacaaI PaGaaGilaiaadIhacqGHsislcaWG3bGaaGykaiabgwMiZkaaicdaca aISaGaaGPaVlaaykW7caWG4bGaeyicI4SaamyuaiaaiYcacaaMf8Ua aGikaiaadkeacaaIOaGaamOEaiaaiMcacaaIOaGaam4DaiabgkHiTi aadAhacaaIPaGaaGilaiaadwhacqGHsislcaWG3bGaaGykaiabgwMi ZkaaicdacaaISaGaaGPaVlaaykW7caWG1bGaeyicI4SaamyvaiaaiY caaaa@651E@

но здесь мы пользуемся (2.7), ибо в (2.1) операторы проектирования в исходной метрике.

3.      Вспомогательные утверждения

Неравенства в леммах дополняют необходимый для доказательства сходимости и скорости сходимости метода математический аппарат.

Лемма 3.1. Пусть u k U E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadwhadaahaaWcbeqaaiaadUgaaaGccqGHiiIZcaWGvbGaeyOG IWSaamyramaaCaaaleqabaGaamyBaaaaaaa@40B8@  из (2.1) выпуклая функция g(x) C 2,1 (Q) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaikdacaaI SaGaaGymaaaakiaaiIcacaWGrbGaaGykaaaa@4030@  удовлетворяет соотношениям

g(x)= A 1 (x) φ x (x, u k ),g(w)g(v)Kwv,w,vQ,K= L m . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaam 4zaiaaiIcacaWG4bGaaGykaiaai2dacaWGbbWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaaGikaiaadIhacaaIPaGaey4bIeTaeqOXdO2aaS baaSqaaiaadIhaaeqaaOGaaGikaiaadIhacaaISaGaamyDamaaCaaa leqabaGaam4AaaaakiaaiMcacaaISaqeeuuDJXwAKbsr4rNCHbacfa Gae8xjIaLaey4bIeTaam4zaiaaiIcacaWG3bGaaGykaiabgkHiTiab gEGirlaadEgacaaIOaGaamODaiaaiMcacqWFLicucqGHKjYOcaWGlb Gae8xjIaLaam4DaiabgkHiTiaadAhacqWFLicucaaISaGaaGzbVlaa dEhacaaISaGaamODaiabgIGiolaadgfacaaISaGaaGjbVlaadUeaca aI9aWaaSaaaeaacaWGmbaabaGaamyBaaaacaaIUaaaaa@71B5@

Тогда

(g( x * ),z x * )0,zQ, x * Q * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgE GirlaadEgacaaIOaGaamiEamaaCaaaleqabaGaaGOkaaaakiaaiMca caaISaGaamOEaiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGcca aIPaGaeyyzImRaaGimaiaaiYcacaaMf8UaamOEaiabgIGiolaadgfa caaISaGaaGjbVlaadIhadaahaaWcbeqaaiaaiQcaaaGccqGHiiIZca WGrbWaaSbaaSqaaiaaiQcaaeqaaOGaaGOlaaaa@51E9@ (3.1)

Доказательство дано для работы [7].

Лемма 3.2. Пусть x k Q E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadIhadaahaaWcbeqaaiaadUgaaaGccqGHiiIZcaWGrbGaeyOG IWSaamyramaaCaaaleqabaGaamOBaaaaaaa@40B8@  из (2.1) вогнутая функция h(u) C 2,1 (U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG1bGaaGykaiabgIGiolaadoeadaahaaWcbeqaaiaaikdacaaI SaGaaGymaaaakiaaiIcacaWGvbGaaGykaaaa@4032@  удовлетворяет соотношениям

h(u)= B 1 (u) φ u ( x k ,u),h(u)h(v)Ruv,u,vU,R= L 0 2m . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaam iAaiaaiIcacaWG1bGaaGykaiaai2dacaWGcbWaaWbaaSqabeaacqGH sislcaaIXaaaaOGaaGikaiaadwhacaaIPaGaey4bIeTaeqOXdO2aaS baaSqaaiaadwhaaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiaadUga aaGccaaISaGaamyDaiaaiMcacaaISaqeeuuDJXwAKbsr4rNCHbacfa Gae8xjIaLaey4bIeTaamiAaiaaiIcacaWG1bGaaGykaiabgkHiTiab gEGirlaadIgacaaIOaGaamODaiaaiMcacqWFLicucqGHKjYOcaWGsb Gae8xjIaLaamyDaiabgkHiTiaadAhacqWFLicucaaISaGaaGzbVlaa dwhacaaISaGaamODaiabgIGiolaadwfacaaISaGaaGjbVlaadkfaca aI9aWaaSaaaeaacaWGmbWaaWbaaSqabeaacaaIWaaaaaGcbaGaaGOm aiaad2gaaaGaaGOlaaaa@7369@

Тогда

(h( u * ), u * w)0,wU, u * U * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiabgE GirlaadIgacaaIOaGaamyDamaaCaaaleqabaGaaGOkaaaakiaaiMca caaISaGaamyDamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadEhaca aIPaGaeyyzImRaaGimaiaaiYcacaaMf8Uaam4DaiabgIGiolaadwfa caaISaGaaGjbVlaadwhadaahaaWcbeqaaiaaiQcaaaGccqGHiiIZca WGvbWaaWbaaSqabeaacaaIQaaaaOGaaGOlaaaa@51E4@ (3.2)

Доказательство дано для работы [7].

Лемма 3.3. Для всякой тройки точек u,v,w E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiY cacaWG2bGaaGilaiaadEhacqGHiiIZcaWGfbWaaWbaaSqabeaacaWG Ubaaaaaa@3DC2@  (или u,v,w E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaaiY cacaWG2bGaaGilaiaadEhacqGHiiIZcaWGfbWaaWbaaSqabeaacaWG Tbaaaaaa@3DC1@  ) справедливо неравенство

(1ε)uv 2 +(1 ε 1 )vw 2 uw 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcqaH1oqzcaaIPaqeeuuDJXwAKbsr4rNCHbacfaGae8xj IaLaamyDaiabgkHiTiaadAhacqWFLicudaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaIOaGaaGymaiabgkHiTiabew7aLnaaCaaaleqabaGa eyOeI0IaaGymaaaakiaaiMcacqWFLicucaWG2bGaeyOeI0Iaam4Dai ab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJkab=vIiqjaadwha cqGHsislcaWG3bGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizIm kaaa@5C50@

(1+ε)uv 2 +(1+ ε 1 )vw 2 ,ε>0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaH1oqzcaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamyDaiabgkHiTiaadAhacqWFLicudaahaaWcbeqaai aaikdaaaGccqGHRaWkcaaIOaGaaGymaiabgUcaRiabew7aLnaaCaaa leqabaGaeyOeI0IaaGymaaaakiaaiMcacqWFLicucaWG2bGaeyOeI0 Iaam4Daiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMe8Ua eqyTduMaaGOpaiaaicdacaaIUaaaaa@5A9B@ (3.3)

Доказательство приведено, например, в работе [6].

4.      Сходимость ПОДЭМКСМ

Теорема 4.1. Пусть выполнены: предположения а) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ г) из п. 1 о задаче (1.1) и функции φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@ ; неравенства (2.2) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  (2.4); параметры константы ПОДЭМКСМ (2.1) таковы:

0<α<1/3,0<β<2(13α)m/[L(1α)], 0<λ<4p(13α)/[ L 0 (1α)]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaaicdacaaI8aGaeqySdeMaaGipaiaaigdacaaIVaGaaG4maiaa iYcacaaIWaGaaGipaiabek7aIjaaiYdacaaIYaGaaGikaiaaigdacq GHsislcaaIZaGaeqySdeMaaGykaiaad2gacaaIVaGaaG4waiaadYea caaIOaGaaGymaiabgkHiTiabeg7aHjaaiMcacaaIDbGaaGilaaqaai aaicdacaaI8aGaeq4UdWMaaGipaiaaisdacaWGWbGaaGikaiaaigda cqGHsislcaaIZaGaeqySdeMaaGykaiaai+cacaaIBbGaamitamaaCa aaleqabaGaaGimaaaakiaaiIcacaaIXaGaeyOeI0IaeqySdeMaaGyk aiaai2facaaIUaaaaaaa@6547@ (4.1)

Тогда процесс (2.1), (4.1) по норме пространства E n × E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamOBaaaakiabgEna0kaadweadaahaaWcbeqaaiaad2ga aaaaaa@3BEB@  сходится к решению ( x * , u * ) W * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcacqGHiiIZcaWGxbWaaSbaaSqaaiaaiQcaaeqaaa aa@3F1F@  задачи (1.1), то есть x k x * Q * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaam4AaaaakiabgkziUkaadIhadaahaaWcbeqaaiaaiQca aaGccqGHiiIZcaWGrbWaaSbaaSqaaiaaiQcaaeqaaaaa@3F2A@ , u k u * U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaam4AaaaakiabgkziUkaadwhadaahaaWcbeqaaiaaiQca aaGccqGHiiIZcaWGvbWaaWbaaSqabeaacaaIQaaaaaaa@3F29@  при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ .

Доказательство. Представим каждое уравнение из (2.1), пользуясь (2.7), в виде вариационного неравенства, тогда этот итерационный процесс запишется в форме:

z k x k α k y k ,v z k 0,vQ, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqa baGaam4AaaaakiabgkHiTiabeg7aHnaaBaaaleaacaWGRbaabeaaki aadMhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamODaiabgkHiTiaa dQhadaahaaWcbeqaaiaadUgaaaaakiaawIcacaGLPaaacqGHLjYSca aIWaGaaGilaiaaysW7caWG2bGaeyicI4SaamyuaiaaiYcaaaa@5020@ (4.2)

x k+1 z k + β k A k 1 φ x ( z k , u k ),v x k+1 0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dQhadaahaaWcbeqaaiaadUgaaaGccqGHRaWkcqaHYoGydaWgaaWcba Gaam4AaaqabaGccaWGbbWaa0baaSqaaiaadUgaaeaacqGHsislcaaI XaaaaOGaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGikai aadQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqa baGaam4AaaaakiaaiMcacaaISaGaamODaiabgkHiTiaadIhadaahaa WcbeqaaiaadUgacqGHRaWkcaaIXaaaaaGccaGLOaGaayzkaaGaeyyz ImRaaGimaiaaiYcaaaa@59FF@ (4.3)

w k u k α k v k ,u w k 0,uU, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqa baGaam4AaaaakiabgkHiTiabeg7aHnaaBaaaleaacaWGRbaabeaaki aadAhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDaiabgkHiTiaa dEhadaahaaWcbeqaaiaadUgaaaaakiaawIcacaGLPaaacqGHLjYSca aIWaGaaGilaiaaysW7caWG1bGaeyicI4SaamyvaiaaiYcaaaa@5016@ (4.4)

u k+1 w k λ k B k 1 φ u ( x k+1 , w k ),u u k+1 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dEhadaahaaWcbeqaaiaadUgaaaGccqGHsislcqaH7oaBdaWgaaWcba Gaam4AaaqabaGccaWGcbWaa0baaSqaaiaadUgaaeaacqGHsislcaaI XaaaaOGaey4bIeTaeqOXdO2aaSbaaSqaaiaadwhaaeqaaOGaaGikai aadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGilaiaa dEhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaaGilaiaadwhacqGHsi slcaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaaaOGaayjk aiaawMcaaiabgwMiZkaaicdacaaIUaaaaa@5BB0@ (4.5)

 Далее почти везде обозначим α k =α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySde2aaS baaSqaaiaadUgaaeqaaOGaaGypaiabeg7aHbaa@3B22@ , β k =β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadUgaaeqaaOGaaGypaiabek7aIbaa@3B26@ , λ k =λ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGypaiabeU7aSbaa@3B4C@ .

Здесь сначала преобразуем (4.2), (4.3), пользуясь свойствами скалярного произведения, формулой (2.1) и вспомогательными неравенствами.

Пользуясь неравенством Коши-Буняковского и нерасширяющим свойством оператора проектирования ([13], с. 190), из (4.2) имеем:

z k x k 2 α( y k , z k x k )α y k z k x k = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccqGHKjYOcqaHXoqycaaIOaGaamyEamaaCaaaleqa baGaam4AaaaakiaaiYcacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaey OeI0IaamiEamaaCaaaleqabaGaam4AaaaakiaaiMcacqGHKjYOcqaH XoqycqWFLicucaWG5bWaaWbaaSqabeaacaWGRbaaaOGae8xjIaLae8 xjIaLaamOEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaadUgaaaGccqWFLicucaaI9aaaaa@5FA7@

=α y k P Q ( x k +α y k ) P Q ( x k ) α 2 y k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiabeg 7aHfbbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadMhadaahaaWcbeqa aiaadUgaaaGccqWFLicucqWFLicucaWGqbWaaSbaaSqaaiaadgfaae qaaOGaaGikaiaadIhadaahaaWcbeqaaiaadUgaaaGccqGHRaWkcqaH XoqycaWG5bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiaadc fadaWgaaWcbaGaamyuaaqabaGccaaIOaGaamiEamaaCaaaleqabaGa am4AaaaakiaaiMcacqWFLicucqGHKjYOcqaHXoqydaahaaWcbeqaai aaikdaaaGccqWFLicucaWG5bWaaWbaaSqabeaacaWGRbaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaaGOlaaaa@5E44@ (4.6)

 Первое слагаемое в неравенстве, следующем из (4.3) с учётом леммы 3.1,

x k+1 x * , x k+1 z k β(g( z k ), x * x k+1 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dIhadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamiEamaaCaaaleqaba Gaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG6bWaaWbaaSqabeaa caWGRbaaaaGccaGLOaGaayzkaaGaeyizImQaeqOSdiMaaGikaiabgE GirlaadEgacaaIOaGaamOEamaaCaaaleqabaGaam4AaaaakiaaiMca caaISaGaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadIhada ahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGykaiaaiYcaaaa@585A@  (4.7)

 где g( z k )=[A( z k )] 1 φ x ( z k , u k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaam 4zaiaaiIcacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiaai2da caaIBbGaamyqaiaaiIcacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaaG ykaiaai2fadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGHhis0cqaH gpGAdaWgaaWcbaGaamiEaaqabaGccaaIOaGaamOEamaaCaaaleqaba Gaam4AaaaakiaaiYcacaWG1bWaaWbaaSqabeaacaWGRbaaaOGaaGyk aaaa@4F8F@ , z k Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEamaaCa aaleqabaGaam4AaaaakiabgIGiolaadgfaaaa@3A77@ , u k U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaam4AaaaakiabgIGiolaadwfaaaa@3A76@ , преобразуем с помощью тождества

uw 2 =uv 2 +2(uv,vw)+vw 2 v,u,w E n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDaiabgkHiTiaadEhacqWFLicudaah aaWcbeqaaiaaikdaaaGccaaI9aGae8xjIaLaamyDaiabgkHiTiaadA hacqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaaIYaGaaGik aiaadwhacqGHsislcaWG2bGaaGilaiaadAhacqGHsislcaWG3bGaaG ykaiabgUcaRiab=vIiqjaadAhacqGHsislcaWG3bGae8xjIa1aaWba aSqabeaacaaIYaaaaOGaaGzbVlabgcGiIiaaysW7caWG2bGaaGilai aadwhacaaISaGaam4DaiabgIGiolaadweadaahaaWcbeqaaiaad6ga aaGccaaIUaaaaa@645D@  (4.8)

 Получим

x * x k+1 , x k+1 z k = x * z k 2 x * x k+1 2 x k+1 z k 2 /2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaae WaaeaacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamiEamaa CaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaaISaGaamiEamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG6bWaaWba aSqabeaacaWGRbaaaaGccaGLOaGaayzkaaGaaGypaiabgkHiTmaabm aabaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqa baGaaGOkaaaakiabgkHiTiaadQhadaahaaWcbeqaaiaadUgaaaGccq WFLicudaahaaWcbeqaaiaaikdaaaGccqGHsislcqWFLicucaWG4bWa aWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam 4AaiabgUcaRiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc cqGHsislcqWFLicucaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaG ymaaaakiabgkHiTiaadQhadaahaaWcbeqaaiaadUgaaaGccqWFLicu daahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaIVaGaaGOmai aai6caaaa@6E53@

 С учётом этого преобразования из (4.7) следует неравенство

x * x k+1 2 + x k+1 z k 2 x * z k 2 2β(g( z k ), x * x k+1 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaaGOkaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamiEamaa CaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG6bWaaW baaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa eyOeI0Iae8xjIaLaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTi aadQhadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaa ikdaaaGccqGHKjYOcaaIYaGaeqOSdiMaaGikaiabgEGirlaadEgaca aIOaGaamOEamaaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaamiE amaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadIhadaahaaWcbeqaai aadUgacqGHRaWkcaaIXaaaaOGaaGykaiaai6caaaa@6BC0@ (4.9)

 В (4.9) преобразуем третье слагаемое, пользуясь нерастягивающим свойством оператора проектирования,

z k x * 2 = P Q ( x k +α y k ) P Q ( x * ) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccaaI9aGae8xjIaLaamiuamaaBaaaleaacaWGrbaa beaakiaaiIcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaey4kaSIaeq ySdeMaamyEamaaCaaaleqabaGaam4AaaaakiaaiMcacqGHsislcaWG qbWaaSbaaSqaaiaadgfaaeqaaOGaaGikaiaadIhadaahaaWcbeqaai aaiQcaaaGccaaIPaGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyiz Imkaaa@588B@

x k +α y k x * 2 = x k x * 2 +2α( x k x * , y k )+ α 2 y k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImAeeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4A aaaakiabgUcaRiabeg7aHjaadMhadaahaaWcbeqaaiaadUgaaaGccq GHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqa beaacaaIYaaaaOGaaGypaiab=vIiqjaadIhadaahaaWcbeqaaiaadU gaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1a aWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHjaaiIcaca WG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqa baGaaGOkaaaakiaaiYcacaWG5bWaaWbaaSqabeaacaWGRbaaaOGaaG ykaiabgUcaRiabeg7aHnaaCaaaleqabaGaaGOmaaaakiab=vIiqjaa dMhadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaik daaaGccaaISaaaaa@67ED@

 и здесь преобразуем среднее слагаемое с помощью (4.8),

2α( x k x * , y k )=α x k x * 2 + y k 2 x k1 x * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabeg 7aHjaaiIcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiE amaaCaaaleqabaGaaGOkaaaakiaaiYcacaWG5bWaaWbaaSqabeaaca WGRbaaaOGaaGykaiaai2dacqaHXoqydaqadaqaaebbfv3ySLgzGueE 0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgaaaGccqGHsi slcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaey4kaSIae8xjIaLaamyEamaaCaaaleqabaGaam4Aaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgkHiTiab=vIiqjaa dIhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaeyOeI0Iaam iEamaaCaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaGOm aaaaaOGaayjkaiaawMcaaiaaiYcaaaa@63DB@

 тогда

|| z k x * || 2 (1+α)|| x k x * || 2 +α||x k1 x * 2 (α+ α 2 )||y k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0IaaG iFaiaaiYhacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiE amaaCaaaleqabaGaaGOkaaaakiaaiYhacaaI8bWaaWbaaSqabeaaca aIYaaaaOGaeyyzImRaeyOeI0IaaGikaiaaigdacqGHRaWkcqaHXoqy caaIPaGaaGiFaiaaiYhacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaey OeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiaaiYhacaaI8bWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaeqySdeMaaGiFaiaaiYhacaaMi8 UaaGjbVlaadIhacaaMi8+aaWbaaSqabeaacaWGRbGaeyOeI0IaaGym aaaakiabgkHiTiaayIW7caaMe8UaamiEaiaayIW7daahaaWcbeqaai aaiQcaaaqeeuuDJXwAKbsr4rNCHbacfaGccqWFLicudaahaaWcbeqa aiaaikdaaaGccqGHsislcaaIOaGaeqySdeMaey4kaSIaeqySde2aaW baaSqabeaacaaIYaaaaOGaaGykaiaaiYhacaaI8bGaaGjcVlaaysW7 caWG5bGaaGjcVpaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaale qabaGaaGOmaaaakiaai6caaaa@8085@

 Правую часть (4.9) сложим с неравенством (3.1) из леммы 3.1 при z= x k+1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaai2 dacaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaaaaa@3B74@ , умножив на 2β MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabek 7aIbaa@3854@  и, c учётом константы Липшица K= L m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4saiaai2 dadaWcaaqaaiaadYeaaeaacaWGTbaaaaaa@3961@  для градиента гладкой выпуклой функции g(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4zaiaaiI cacaWG4bGaaGykaaaa@3945@  из леммы 1, применим неравенство для таких функций ([12], гл. 1, c. 25)

2β g(z k )g( x * ), x * x k+1 2β K 4 z k x k+1 2 = Lβ 2m z k x k+1 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabek 7aInaabmaabaGaey4bIeTaam4zaiaaiIcacaaMi8UaaGjbVlaadQha caaMi8+aaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirl aadEgacaaIOaGaamiEamaaCaaaleqabaGaaGOkaaaakiaaiMcacaaI SaGaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadIhadaahaa WcbeqaaiaadUgacqGHRaWkcaaIXaaaaaGccaGLOaGaayzkaaGaeyiz ImQaaGOmaiabek7aInaalaaabaGaam4saaqaaiaaisdaaaqeeuuDJX wAKbsr4rNCHbacfaGae8xjIaLaamOEamaaCaaaleqabaGaam4Aaaaa kiabgkHiTiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaO Gae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGypamaalaaabaGaamit aiabek7aIbqaaiaaikdacaWGTbaaaiab=vIiqjaadQhadaahaaWcbe qaaiaadUgaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGRbGaey4k aSIaaGymaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcaaa a@7678@

  z, x k+1 Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOEaiaaiY cacaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgIGi olaadgfaaaa@3DC7@ , x * Q * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOkaaaakiabgIGiolaadgfadaWgaaWcbaGaaGOkaaqa baaaaa@3B19@ . Подставив эти оценки слагаемых, из (4.9) получим,

x k+1 x * 2 +(1 Lβ 2m ) z k x k+1 2 +α x k1 x * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaigdacqGH sisldaWcaaqaaiaadYeacqaHYoGyaeaacaaIYaGaamyBaaaacaaIPa Gae8xjIaLaamOEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadIha daahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGae8xjIa1aaWbaaS qabeaacaaIYaaaaOGaey4kaSIaeqySdeMae8xjIaLaamiEamaaCaaa leqabaGaam4AaiabgkHiTiaaigdaaaGccqGHsislcaWG4bWaaWbaaS qabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyiz Imkaaa@6474@

(1+α) x * x k 2 +( α 2 +α) y k 2 ,k1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadI hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIOaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaeqySdeMaaGykaiab=vIiqjaadMhadaahaaWcbeqaaiaadUga aaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaISaGaaGjbVlaadU gacqGHLjYScaaIXaGaaGOlaaaa@5C23@ (4.10)

 В (4.10) второе слагаемое преобразуем с помощью левого неравенства (3.3), затем (4.6). Получим

x k+1 z k 2 (1α) x k+1 x k 2 +(1 α 1 ) x k z k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG6bWaaWbaaSqabeaacaWGRbaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyyzImRaaGikaiaaigdacqGH sislcqaHXoqycaaIPaGae8xjIaLaamiEamaaCaaaleqabaGaam4Aai abgUcaRiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGRbaa aOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaig dacqGHsislcqaHXoqydaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaI PaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadQ hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHLjYSaaa@6696@

(1α) x k+1 x k 2 (1α)α y k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyzImRaaG ikaiaaigdacqGHsislcqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaa GccqGHsislcaWG4bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWba aSqabeaacaaIYaaaaOGaeyOeI0IaaGikaiaaigdacqGHsislcqaHXo qycaaIPaGaeqySdeMae8xjIaLaamyEamaaCaaaleqabaGaam4Aaaaa kiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcaaaa@5840@

 отсюда

(1 Lβ 2m ) x k+1 z k 2 (1 Lβ 2m )(1α) x k+1 x k 2 α y k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsisldaWcaaqaaiaadYeacqaHYoGyaeaacaaIYaGaamyBaaaa caaIPaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaale qabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG6bWaaWbaaSqa beaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyyzIm RaaGikaiaaigdacqGHsisldaWcaaqaaiaadYeacqaHYoGyaeaacaaI YaGaamyBaaaacaaIPaGaaGikaiaaigdacqGHsislcqaHXoqycaaIPa WaaeWaaeaacqWFLicucaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIa aGymaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaadUgaaaGccqWFLi cudaahaaWcbeqaaiaaikdaaaGccqGHsislcqaHXoqycqWFLicucaWG 5bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYa aaaaGccaGLOaGaayzkaaGaaGOlaaaa@6D98@

 Подставив это преобразование в (4.10), получим неравенство

x k+1 x * 2 + a 1 x k+1 x k 2 +α x k1 x * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaa caaIXaaabeaakiab=vIiqjaadIhadaahaaWcbeqaaiaadUgacqGHRa WkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4Aaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHjab=vIiqj aadIhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaeyOeI0Ia amiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaG OmaaaakiabgsMiJcaa@5F0C@

(1+α) x * x k 2 + a 2 y k 2 ,k1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadI hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHRaWkcaWGHbWaaSbaaSqaaiaaikdaaeqaaOGae8xjIaLaam yEamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOm aaaakiaaiYcacaaMe8Uaam4AaiabgwMiZkaaigdacaaISaaaaa@5781@ (4.11)

 где a 1 =(1α)(1 Lβ 2m ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaaabeaakiaai2dacaaIOaGaaGymaiabgkHiTiabeg7a HjaaiMcacaaIOaGaaGymaiabgkHiTmaalaaabaGaamitaiabek7aIb qaaiaaikdacaWGTbaaaiaaiMcaaaa@447E@ , a 2 =2α Lβ 2m (α α 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaaabeaakiaai2dacaaIYaGaeqySdeMaeyOeI0YaaSaa aeaacaWGmbGaeqOSdigabaGaaGOmaiaad2gaaaGaaGikaiabeg7aHj abgkHiTiabeg7aHnaaCaaaleqabaGaaGOmaaaakiaaiMcaaaa@4691@ , 0<β< 2m L MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHYoGycaaI8aWaaSaaaeaacaaIYaGaamyBaaqaaiaadYeaaaaa aa@3C6D@ .

Теперь рассмотрим неравенства (4.4) и (4.5). Представим неравенство (4.5) в форме

u k+1 w k , u k+1 u * λ h( w k ), u k+1 u * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dEhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqaba Gaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaa caaIQaaaaaGccaGLOaGaayzkaaGaeyizImQaeq4UdW2aaeWaaeaacq GHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI PaGaaGilaiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaO GaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaaaOGaayjkaiaawMca aiaaiYcaaaa@587D@ (4.12)

 где по лемме 3.2 h( w k )= B k 1 φ u ( x k+1 , w k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4bIeTaam iAaiaaiIcacaWG3bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiaai2da caWGcbWaa0baaSqaaiaadUgaaeaacqGHsislcaaIXaaaaOGaey4bIe TaeqOXdO2aaSbaaSqaaiaadwhaaeqaaOGaaGikaiaadIhadaahaaWc beqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGilaiaadEhadaahaaWcbe qaaiaadUgaaaGccaaIPaaaaa@4CC1@  и, поскольку

h( w k ), u k+1 u * = h( w k ), u * w k h( w k ), w k u k+1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq GHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI PaGaaGilaiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaO GaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaaaOGaayjkaiaawMca aiaai2dacqGHsisldaqadaqaaiabgEGirlaadIgacaaIOaGaam4Dam aaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaamyDamaaCaaaleqa baGaaGOkaaaakiabgkHiTiaadEhadaahaaWcbeqaaiaadUgaaaaaki aawIcacaGLPaaacaaItaYaaeWaaeaacqGHhis0caWGObGaaGikaiaa dEhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaaGilaiaadEhadaahaa WcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaWGRbGa ey4kaSIaaGymaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@641F@

 для преобразования получим неравенство

u k+1 w k , u k+1 u * +λ h( w k ), u * w k +λ h( w k ), w k u k+1 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dEhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqaba Gaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaa caaIQaaaaaGccaGLOaGaayzkaaGaey4kaSIaeq4UdW2aaeWaaeaacq GHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI PaGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG3b WaaWbaaSqabeaacaWGRbaaaaGccaGLOaGaayzkaaGaey4kaSIaeq4U dW2aaeWaaeaacqGHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaai aadUgaaaGccaaIPaGaaGilaiaadEhadaahaaWcbeqaaiaadUgaaaGc cqGHsislcaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaaaO GaayjkaiaawMcaaiabgsMiJkaaicdacaaIUaaaaa@6A1E@ (4.13)

 С помощью нерасширяющего свойства оператора проектирования ([13], с. 190) и неравенства Коши-Буняковского, из (4.4) имеем

  w k u k 2 α( v k , w k u k )α v k w k u k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaam4DamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccqGHKjYOcqaHXoqycaaIOaGaamODamaaCaaaleqa baGaam4AaaaakiaaiYcacaWG3bWaaWbaaSqabeaacaWGRbaaaOGaey OeI0IaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacqGHKjYOcqaH XoqycqWFLicucaWG2bWaaWbaaSqabeaacaWGRbaaaOGae8xjIaLae8 xjIaLaam4DamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadwhadaah aaWcbeqaaiaadUgaaaGccqWFLicucqGHKjYOaaa@607D@

  α v k P U ( w k ) P U ( u k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaeq ySdeweeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamODamaaCaaaleqa baGaam4Aaaaakiab=vIiqjab=vIiqjaadcfadaWgaaWcbaGaamyvaa qabaGccaaIOaGaam4DamaaCaaaleqabaGaam4AaaaakiaaiMcacqGH sislcaWGqbWaaSbaaSqaaiaadwfaaeqaaOGaaGikaiaadwhadaahaa WcbeqaaiaadUgaaaGccaaIPaGae8xjIaLaeyizImkaaa@51F3@

α v k u k +α v k u k = α 2 v k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaeq ySdeweeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamODamaaCaaaleqa baGaam4Aaaaakiab=vIiqjab=vIiqjaadwhadaahaaWcbeqaaiaadU gaaaGccqGHRaWkcqaHXoqycaWG2bWaaWbaaSqabeaacaWGRbaaaOGa eyOeI0IaamyDamaaCaaaleqabaGaam4Aaaaakiab=vIiqjaai2dacq aHXoqydaahaaWcbeqaaiaaikdaaaGccqWFLicucaWG2bWaaWbaaSqa beaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGOlaa aa@57A9@ (4.14)

 Первое слагаемое из (4.13) преобразуем с помощью тождества (4.8),

               u * u k+1 , u k+1 w k = u * w k 2 u * u k+1 2 u k+1 w k 2 /2. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0Yaae WaaeaacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamyDamaa CaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccaaISaGaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG3bWaaWba aSqabeaacaWGRbaaaaGccaGLOaGaayzkaaGaaGypaiabgkHiTmaabm aabaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqa baGaaGOkaaaakiabgkHiTiaadEhadaahaaWcbeqaaiaadUgaaaGccq WFLicudaahaaWcbeqaaiaaikdaaaGccqGHsislcqWFLicucaWG1bWa aWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaam 4AaiabgUcaRiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc cqGHsislcqWFLicucaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaG ymaaaakiabgkHiTiaadEhadaahaaWcbeqaaiaadUgaaaGccqWFLicu daahaaWcbeqaaiaaikdaaaaakiaawIcacaGLPaaacaaIVaGaaGOmai aai6caaaa@6E35@

 Ко второму и третьему слагаемым из (4.13) применим соответственно неравенства (см. [14], гл. 2, с.44; и [13], гл. 2, с. 93)

                                                       h( w k ), u * w k h( u * )h( w k ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq GHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI PaGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG3b WaaWbaaSqabeaacaWGRbaaaaGccaGLOaGaayzkaaGaeyyzImRaamiA aiaaiIcacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiabgkHiTi aadIgacaaIOaGaam4DamaaCaaaleqabaGaam4AaaaakiaaiMcacaaI Saaaaa@4F3B@

                                  h( w k ), w k u k+1 h( w k )h( u k+1 ) R 2 u k+1 w k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaacq GHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI PaGaaGilaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaItaIaamyDam aaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaaakiaawIcacaGLPaaa cqGHLjYScaWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGcca aIPaGaeyOeI0IaamiAaiaaiIcacaWG1bWaaWbaaSqabeaacaWGRbGa ey4kaSIaaGymaaaakiaaiMcacqGHsisldaWcaaqaaiaadkfaaeaaca aIYaaaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhadaahaaWc beqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0Iaam4DamaaCaaale qabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaaaa@6322@

 здесь число R= L 0 /(2p) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaai2 dacaWGmbWaaWbaaSqabeaacaaIWaaaaOGaaG4laiaaiIcacaaIYaGa amiCaiaaiMcaaaa@3D26@  определено в лемме 3.2.

Приведя подобные, учитывая условие вогнутости h( u * )h( u k+1 )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiAaiaaiI cacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiabgkHiTiaadIga caaIOaGaamyDamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGcca aIPaGaeyyzImRaaGimaaaa@43AB@  и лемму 3.2, правая часть (4.12) с учётом (4.13) преобразуется к виду

                           λ h( w k ), u k+1 u * λ R 2 u k+1 w k 2 = L 0 λ 4p u k+1 w k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aae WaaeaacqGHhis0caWGObGaaGikaiaadEhadaahaaWcbeqaaiaadUga aaGccaaIPaGaaGilaiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkca aIXaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaaaOGaayjk aiaawMcaaiabgsMiJkabeU7aSnaalaaabaGaamOuaaqaaiaaikdaaa qeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGa am4AaiabgUcaRiaaigdaaaGccqGHsislcaWG3bWaaWbaaSqabeaaca WGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGypamaalaaa baGaamitamaaCaaaleqabaGaaGimaaaakiabeU7aSbqaaiaaisdaca WGWbaaaiab=vIiqjaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaI XaaaaOGaeyOeI0Iaam4DamaaCaaaleqabaGaam4Aaaaakiab=vIiqn aaCaaaleqabaGaaGOmaaaakiaai6caaaa@6AC7@

 Тогда из (4.12) и, следовательно, (4.13), следует,

                                  u k+1 u * 2 +(1 L 0 λ 4p ) u k+1 w k 2 w k u * 2 0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaigdacqGH sisldaWcaaqaaiaadYeadaahaaWcbeqaaiaaicdaaaGccqaH7oaBae aacaaI0aGaamiCaaaacaaIPaGae8xjIaLaamyDamaaCaaaleqabaGa am4AaiabgUcaRiaaigdaaaGccqGHsislcaWG3bWaaWbaaSqabeaaca WGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyOeI0Iae8xj IaLaam4DamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadwhadaahaa WcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGH KjYOcaaIWaGaaGOlaaaa@63A3@  (4.15)

 Преобразуем здесь второе слагаемое с помощью левого неравенства (3.3) при ε=α MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiabeg7aHbaa@3A04@ , учтём оценку (4.14),

                 u k+1 w k 2 (1α) u k+1 u k 2 +(1 α 1 ) u k w k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG3bWaaWbaaSqabeaacaWGRbaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyyzImRaaGikaiaaigdacqGH sislcqaHXoqycaaIPaGae8xjIaLaamyDamaaCaaaleqabaGaam4Aai abgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaWGRbaa aOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaig dacqGHsislcqaHXoqydaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaI PaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadE hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHLjYSaaa@6684@

                                               (1α) u k+1 u k 2 +(1 α 1 ) α 2 v k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyyzImRaaG ikaiaaigdacqGHsislcqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaa GccqGHsislcaWG1bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWba aSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaigdacqGHsislcqaHXo qydaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIPaGaeqySde2aaWba aSqabeaacaaIYaaaaOGae8xjIaLaamODamaaCaaaleqabaGaam4Aaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcaaaa@5AFE@

                                b u k+1 w k 2 (1α)b u k+1 u k 2 (1α)αb v k 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaebbfv 3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhadaahaaWcbeqaaiaadUga cqGHRaWkcaaIXaaaaOGaeyOeI0Iaam4DamaaCaaaleqabaGaam4Aaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgwMiZkaaiIcacaaI XaGaeyOeI0IaeqySdeMaaGykaiaadkgacqWFLicucaWG1bWaaWbaaS qabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadwhadaahaaWc beqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHsi slcaaIOaGaaGymaiabgkHiTiabeg7aHjaaiMcacqaHXoqycaWGIbGa e8xjIaLaamODamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaale qabaGaaGOmaaaakiaaiYcaaaa@64E5@

  b=1 L 0 λ 4p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOyaiaai2 dacaaIXaGaeyOeI0YaaSaaaeaacaWGmbWaaWbaaSqabeaacaaIWaaa aOGaeq4UdWgabaGaaGinaiaadchaaaaaaa@3E86@ , а третье слагаемое преобразуем с помощью нерастягивающего свойства оператора проектирования и (4.8),

                 w k u * 2 P U ( u k +α v k ) P U ( u * ) 2 u k +α v k u * 2 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaam4DamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccqGHKjYOcqWFLicucaWGqbWaaSbaaSqaaiaadwfa aeqaaOGaaGikaiaadwhadaahaaWcbeqaaiaadUgaaaGccqGHRaWkcq aHXoqycaWG2bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiaa dcfadaWgaaWcbaGaamyvaaqabaGccaaIOaGaamyDamaaCaaaleqaba GaaGOkaaaakiaaiMcacqWFLicudaahaaWcbeqaaiaaikdaaaGccqGH KjYOcqWFLicucaWG1bWaaWbaaSqabeaacaWGRbaaaOGaey4kaSIaeq ySdeMaamODamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadwhadaah aaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGcca aI9aaaaa@66FA@

                                              = u k u * 2 +2α( v k , u k u * )+ α 2 v k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaebbfv 3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhadaahaaWcbeqaaiaadUga aaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGOmaiabeg7aHjaaiIcacaWG 2bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaaWcbeqaai aadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGyk aiabgUcaRiabeg7aHnaaCaaaleqabaGaaGOmaaaakiab=vIiqjaadA hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHKjYOaaa@5A5B@

                                  (1+α) u k u * 2 +( α 2 +α) v k 2 α u k1 u * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbac faGae8xjIaLaamyDamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadw hadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHRaWkcaaIOaGaeqySde2aaWbaaSqabeaacaaIYaaaaOGaey 4kaSIaeqySdeMaaGykaiab=vIiqjaadAhadaahaaWcbeqaaiaadUga aaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHsislcqaHXoqycq WFLicucaWG1bWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGymaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccaaISaaaaa@62B6@

                   w k u * 2 (1+α) u k u * 2 ( α 2 +α) v k 2 +α u k1 u * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyOeI0seeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaam4DamaaCaaaleqabaGaam4A aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuda ahaaWcbeqaaiaaikdaaaGccqGHLjYScqGHsislcaaIOaGaaGymaiab gUcaRiabeg7aHjaaiMcacqWFLicucaWG1bWaaWbaaSqabeaacaWGRb aaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaakiab=vIiqnaa CaaaleqabaGaaGOmaaaakiabgkHiTiaaiIcacqaHXoqydaahaaWcbe qaaiaaikdaaaGccqGHRaWkcqaHXoqycaaIPaGae8xjIaLaamODamaa CaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki abgUcaRiabeg7aHjab=vIiqjaadwhadaahaaWcbeqaaiaadUgacqGH sislcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaaki ab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcaaaa@6CC1@

 где использована получаемая с помощью (4.8) оценка

   2α( v k , u k u * )=2α( u k1 u k , u k u * )=α v k 2 α u k1 u * 2 +α u k u * 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiabeg 7aHjaaiIcacaWG2bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwha daahaaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaaca aIQaaaaOGaaGykaiaai2dacqGHsislcaaIYaGaeqySdeMaaGikaiaa dwhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaeyOeI0Iaam yDamaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWbaaSqabeaa caWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaakiaaiM cacaaI9aGaeqySdeweeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamOD amaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOmaa aakiabgkHiTiabeg7aHjab=vIiqjaadwhadaahaaWcbeqaaiaadUga cqGHsislcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHjab =vIiqjaadwhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa aGOlaaaa@776E@

 С учётом этих преобразований из (4.15) получим,

    u k+1 u * 2 + a 3 u k+1 u k 2 +α u k1 u * 2 (1+α) u k u * 2 + a 4 v k 2 ,k1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaa caaIZaaabeaakiab=vIiqjaadwhadaahaaWcbeqaaiaadUgacqGHRa WkcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaam4Aaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHjab=vIiqj aadwhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaeyOeI0Ia amyDamaaCaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaG OmaaaakiabgsMiJkaaiIcacaaIXaGaey4kaSIaeqySdeMaaGykaiab =vIiqjaadwhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaI0aaabeaakiab=vIiqjaadAhada ahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc caaISaGaaGjbVlaadUgacqGHLjYScaaIXaGaaGilaaaa@7A2E@      (4.16)

 где a 3 =1α L 0 (1α)λ 4p MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIZaaabeaakiaai2dacaaIXaGaeyOeI0IaeqySdeMaeyOe I0YaaSaaaeaacaWGmbWaaWbaaSqabeaacaaIWaaaaOGaaGikaiaaig dacqGHsislcqaHXoqycaaIPaGaeq4UdWgabaGaaGinaiaadchaaaaa aa@46B0@ , a 4 =2α L 0 λ 4p (α α 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI0aaabeaakiaai2dacaaIYaGaeqySdeMaeyOeI0YaaSaa aeaacaWGmbWaaWbaaSqabeaacaaIWaaaaOGaeq4UdWgabaGaaGinai aadchaaaGaaGikaiabeg7aHjabgkHiTiabeg7aHnaaCaaaleqabaGa aGOmaaaakiaaiMcaaaa@479C@ , 0<λ< 4p L 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaH7oaBcaaI8aWaaSaaaeaacaaI0aGaamiCaaqaaiaadYeadaah aaWcbeqaaiaaicdaaaaaaaaa@3D6C@ .

Сложив неравенства (4.11) и (4.16), имеем

                 x k+1 x * 2 + u k+1 u * 2 + a 1 x k+1 x k 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaa CaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaIXaaabeaakiab=vIiqjaadIhada ahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaa CaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki abgUcaRaaa@5C89@

                                     + a 3 u k+1 u k 2 +α( x k1 x * 2 + u k1 u * 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam yyamaaBaaaleaacaaIZaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaey OeI0IaamyDamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqa baGaaGOmaaaakiabgUcaRiabeg7aHjaaiIcacqWFLicucaWG4bWaaW baaSqabeaacaWGRbGaeyOeI0IaaGymaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHRaWkcqWFLicucaWG1bWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGym aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuda ahaaWcbeqaaiaaikdaaaGccaaIPaGaeyizImkaaa@6154@

                        (1+α)( x * x k 2 + u k u * 2 )+ a 2 y k 2 + a 4 v k 2 ,k1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaGaaGikaebbfv3ySLgzGueE 0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaaiQcaaaGccqGHsi slcaWG4bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCaaaleqabaGaam4Aaa aakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaah aaWcbeqaaiaaikdaaaGccaaIPaGaey4kaSIaamyyamaaBaaaleaaca aIYaaabeaakiab=vIiqjaadMhadaahaaWcbeqaaiaadUgaaaGccqWF LicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWGHbWaaSbaaSqaai aaisdaaeqaaOGae8xjIaLaamODamaaCaaaleqabaGaam4Aaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcacaaMe8Uaam4Aaiabgw MiZkaaigdacaaIUaaaaa@69F1@ (4.17)

 Просуммируем (4.17) от k=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaaIXaaaaa@3869@  до k=m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaWGTbaaaa@38A0@ , m1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgw MiZkaaigdaaaa@396A@ , тогда

                 α( x 0 x * 2 + u 0 u * 2 )+ x m+1 x * 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ikaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaaicdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaa CaaaleqabaGaaGimaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQ caaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIPaGaey4kaSIa e8xjIaLaamiEamaaCaaaleqabaGaamyBaiabgUcaRiaaigdaaaGccq GHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqa beaacaaIYaaaaOGaey4kaScaaa@59D6@

                                    + a 1 x m+1 x m 2 + u m+1 u * 2 + a 3 u m+1 u m 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam yyamaaBaaaleaacaaIXaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaad2gacqGHRaWkcaaIXaaaaOGaey OeI0IaamiEamaaCaaaleqabaGaamyBaaaakiab=vIiqnaaCaaaleqa baGaaGOmaaaakiabgUcaRiab=vIiqjaadwhadaahaaWcbeqaaiaad2 gacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOk aaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiaadggada WgaaWcbaGaaG4maaqabaGccqWFLicucaWG1bWaaWbaaSqabeaacaWG TbGaey4kaSIaaGymaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaad2 gaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkaaa@5F84@

                                  + k=1 k=m1 ( a 1 a 2 ) x k+1 x k 2 +( a 3 a 4 ) u k+1 u k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGRbGaaGypaiaad2ga cqGHsislcaaIXaaaniabggHiLdGcdaqadaqaaiaaiIcacaWGHbWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIYaaa beaakiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4bWaaW baaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIOaGaamyyamaaBaaaleaacaaIZaaabeaakiabgkHiTiaa dggadaWgaaWcbaGaaGinaaqabaGccaaIPaGae8xjIaLaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaeyizImkaaa@689F@

                                           a 2 x 1 x 0 2 + a 4 u 1 u 0 2 + x 1 x * 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam yyamaaBaaaleaacaaIYaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaaigdaaaGccqGHsislcaWG4bWaaW baaSqabeaacaaIWaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaI0aaabeaakiab=vIiqjaadwhada ahaaWcbeqaaiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaI WaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIa LaamiEamaaCaaaleqabaGaaGymaaaakiabgkHiTiaadIhadaahaaWc beqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRa Wkaaa@5A73@

                                              + u 1 u * 2 +α( x m x * 2 + u m u * 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSseeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaaGym aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcqaHXoqycaaIOaGae8xjIaLa amiEamaaCaaaleqabaGaamyBaaaakiabgkHiTiaadIhadaahaaWcbe qaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWk cqWFLicucaWG1bWaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamyDam aaCaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaa kiaaiMcacaaISaaaaa@5922@ (4.18)

 где a 1 a 2 =13α L (1α) 2 β 2m >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIXaaabeaakiabgkHiTiaadggadaWgaaWcbaGaaGOmaaqa baGccaaI9aGaaGymaiabgkHiTiaaiodacqaHXoqycqGHsisldaWcaa qaaiaadYeacaaIOaGaaGymaiabgkHiTiabeg7aHjaaiMcadaahaaWc beqaaiaaikdaaaGccqaHYoGyaeaacaaIYaGaamyBaaaacaaI+aGaaG imaaaa@4B9C@ , a 3 a 4 =13α L 0 λ 4p (1α) 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIZaaabeaakiabgkHiTiaadggadaWgaaWcbaGaaGinaaqa baGccaaI9aGaaGymaiabgkHiTiaaiodacqaHXoqycqGHsisldaWcaa qaaiaadYeadaahaaWcbeqaaiaaicdaaaGccqaH7oaBaeaacaaI0aGa amiCaaaacaaIOaGaaGymaiabgkHiTiabeg7aHjaaiMcadaahaaWcbe qaaiaaikdaaaGccaaI+aGaaGimaaaa@4CA9@ , 0<α<1/3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHXoqycaaI8aGaaGymaiaai+cacaaIZaaaaa@3C0D@ , 0<β< 2m(13α) L (1α) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHYoGycaaI8aWaaSaaaeaacaaIYaGaamyBaiaaiIcacaaIXaGa eyOeI0IaaG4maiabeg7aHjaaiMcaaeaacaWGmbGaaGikaiaaigdacq GHsislcqaHXoqycaaIPaWaaWbaaSqabeaacaaIYaaaaaaaaaa@476B@ , 0<λ< 4p(13α) L 0 (1α) 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaH7oaBcaaI8aWaaSaaaeaacaaI0aGaamiCaiaaiIcacaaIXaGa eyOeI0IaaG4maiabeg7aHjaaiMcaaeaacaWGmbWaaWbaaSqabeaaca aIWaaaaOGaaGikaiaaigdacqGHsislcqaHXoqycaaIPaWaaWbaaSqa beaacaaIYaaaaaaaaaa@4874@ .

К первым двум, пятому и шестому слагаемым правой части (4.18) применим правое неравенство (3.3) при ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaigdaaaa@3920@  

                                            a 2 x 1 x 0 2 2 a 2 ( x 1 x * 2 + x 0 x * 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaIYaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab=vIiqjaa dIhadaahaaWcbeqaaiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabe aacaaIWaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQa aGOmaiaadggadaWgaaWcbaGaaGOmaaqabaGccaaIOaGae8xjIaLaam iEamaaCaaaleqabaGaaGymaaaakiabgkHiTiaadIhadaahaaWcbeqa aiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcq WFLicucaWG4bWaaWbaaSqabeaacaaIWaaaaOGaeyOeI0IaamiEamaa CaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki aaiMcacaaISaaaaa@5B83@

                                            a 4 u 1 u 0 2 2 a 4 ( u 1 u * 2 + u * u 0 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI0aaabeaarqqr1ngBPrgifHhDYfgaiuaakiab=vIiqjaa dwhadaahaaWcbeqaaiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabe aacaaIWaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQa aGOmaiaadggadaWgaaWcbaGaaGinaaqabaGccaaIOaGae8xjIaLaam yDamaaCaaaleqabaGaaGymaaaakiabgkHiTiaadwhadaahaaWcbeqa aiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcq WFLicucaWG1bWaaWbaaSqabeaacaaIQaaaaOGaeyOeI0IaamyDamaa CaaaleqabaGaaGimaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki aaiMcacaaISaaaaa@5B75@

                                                           α( x m x * 2 + u m u * 2 ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqySdeMaaG ikaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaad2gaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaa CaaaleqabaGaamyBaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQ caaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIPaGaeyizImka aa@5074@

                      2α( x m x m+1 2 + x m+1 x * 2 + u m u m+1 2 + u m+1 u * 2 ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG Omaiabeg7aHjaaiIcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG 4bWaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamiEamaaCaaaleqaba GaamyBaiabgUcaRiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccqGHRaWkcqWFLicucaWG4bWaaWbaaSqabeaacaWGTbGaey4kaS IaaGymaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWF LicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqWFLicucaWG1bWaaW baaSqabeaacaWGTbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaamyB aiabgUcaRiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHRaWkcqWFLicucaWG1bWaaWbaaSqabeaacaWGTbGaey4kaSIaaGym aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuda ahaaWcbeqaaiaaikdaaaGccaaIPaGaaGOlaaaa@6AE2@

 Тогда из (4.18) следует,

                 (12α) x m+1 x * 2 + u m+1 u * 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaaIYaGaeqySdeMaaGykamaabmaabaqeeuuDJXwAKbsr 4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamyBaiabgUcaRi aaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCa aaleqabaGaamyBaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaey4kaScaaa@56C8@

                                      +( a 1 2α) x m+1 x m 2 +( a 3 2α) u m+1 u m 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadggadaWgaaWcbaGaaGymaaqabaGccqGHsislcaaIYaGaeqyS deMaaGykaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaa Wcbeqaaiaad2gacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaa leqabaGaamyBaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgU caRiaaiIcacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaaGOm aiabeg7aHjaaiMcacqWFLicucaWG1bWaaWbaaSqabeaacaWGTbGaey 4kaSIaaGymaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaad2gaaaGc cqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkaaa@5E3F@

                                  + k=1 k=m1 ( a 1 a 2 ) x k+1 x k 2 +( a 3 a 4 ) u k+1 u k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGRbGaaGypaiaad2ga cqGHsislcaaIXaaaniabggHiLdGcdaqadaqaaiaaiIcacaWGHbWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIYaaa beaakiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4bWaaW baaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIOaGaamyyamaaBaaaleaacaaIZaaabeaakiabgkHiTiaa dggadaWgaaWcbaGaaGinaaqabaGccaaIPaGae8xjIaLaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaeyizImkaaa@689F@

                          a 5 x 0 x * 2 + a 6 u 0 u * 2 + a 7 x 1 x * 2 + a 8 u 1 u * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam yyamaaBaaaleaacaaI1aaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaaicdaaaGccqGHsislcaWG4bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaI2aaabeaakiab=vIiqjaadwhada ahaaWcbeqaaiaaicdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaI QaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyam aaBaaaleaacaaI3aaabeaakiab=vIiqjaadIhadaahaaWcbeqaaiaa igdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa 1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaacaaI 4aaabeaakiab=vIiqjaadwhadaahaaWcbeqaaiaaigdaaaGccqGHsi slcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGilaaaa@66C4@ (4.19)

 где

                                                    a 5 =2 a 2 α=3α L(α α 2 )β m >0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI1aaabeaakiaai2dacaaIYaGaamyyamaaBaaaleaacaaI YaaabeaakiabgkHiTiabeg7aHjaai2dacaaIZaGaeqySdeMaeyOeI0 YaaSaaaeaacaWGmbGaaGikaiabeg7aHjabgkHiTiabeg7aHnaaCaaa leqabaGaaGOmaaaakiaaiMcacqaHYoGyaeaacaWGTbaaaiaai6daca aIWaGaaGilaaaa@4DF8@

                                                    a 6 =2 a 4 α=3α L 0 (α α 2 )λ 2p >0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyyamaaBa aaleaacaaI2aaabeaakiaai2dacaaIYaGaamyyamaaBaaaleaacaaI 0aaabeaakiabgkHiTiabeg7aHjaai2dacaaIZaGaeqySdeMaeyOeI0 YaaSaaaeaacaWGmbWaaWbaaSqabeaacaaIWaaaaOGaaGikaiabeg7a HjabgkHiTiabeg7aHnaaCaaaleqabaGaaGOmaaaakiaaiMcacqaH7o aBaeaacaaIYaGaamiCaaaacaaI+aGaaGimaiaaiYcaaaa@4FBE@

                                                     12α>0, a 7 =1+2 a 2 , a 8 =1+2 a 4 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaaikdacqaHXoqycaaI+aGaaGimaiaaiYcacaaMe8Uaamyyamaa BaaaleaacaaI3aaabeaakiaai2dacaaIXaGaey4kaSIaaGOmaiaadg gadaWgaaWcbaGaaGOmaaqabaGccaaISaGaaGjbVlaadggadaWgaaWc baGaaGioaaqabaGccaaI9aGaaGymaiabgUcaRiaaikdacaWGHbWaaS baaSqaaiaaisdaaeqaaOGaaGilaaaa@4E65@

 и, с учётом неравенств

                                                                              0<α<1/3, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHXoqycaaI8aGaaGymaiaai+cacaaIZaGaaGilaaaa@3CC3@

                                              0< a 1 2α< a 1 a 2 ,0< a 3 2α< a 3 a 4 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaGOmaiabeg7a HjaaiYdacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaamyyam aaBaaaleaacaaIYaaabeaakiaaiYcacaaIWaGaaGipaiaadggadaWg aaWcbaGaaG4maaqabaGccqGHsislcaaIYaGaeqySdeMaaGipaiaadg gadaWgaaWcbaGaaG4maaqabaGccqGHsislcaWGHbWaaSbaaSqaaiaa isdaaeqaaOGaaGilaaaa@4F6B@

                                                          0<β<2m(13α)/[L(1α)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaHYoGycaaI8aGaaGOmaiaad2gacaaIOaGaaGymaiabgkHiTiaa iodacqaHXoqycaaIPaGaaG4laiaaiUfacaWGmbGaaGikaiaaigdacq GHsislcqaHXoqycaaIPaGaaGyxaiaaiYcaaaa@49AD@

                                                          0<λ<4p(13α)/[ L 0 (1α)], MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacqaH7oaBcaaI8aGaaGinaiaadchacaaIOaGaaGymaiabgkHiTiaa iodacqaHXoqycaaIPaGaaG4laiaaiUfacaWGmbWaaWbaaSqabeaaca aIWaaaaOGaaGikaiaaigdacqGHsislcqaHXoqycaaIPaGaaGyxaiaa iYcaaaa@4AB6@

 неравенство (4.19) упростится

                 (12α) x m+1 x * 2 + u m+1 u * 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaaIYaGaeqySdeMaaGykamaabmaabaqeeuuDJXwAKbsr 4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamyBaiabgUcaRi aaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCa aaleqabaGaamyBaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaey4kaScaaa@56C8@

                                 + k=1 k=m ( a 1 2α) x k+1 x k 2 +( a 3 2α) u k+1 u k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGRbGaaGypaiaaigdaaeaacaWGRbGaaGypaiaad2ga a0GaeyyeIuoakmaabmaabaGaaGikaiaadggadaWgaaWcbaGaaGymaa qabaGccqGHsislcaaIYaGaeqySdeMaaGykaebbfv3ySLgzGueE0jxy aGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXa aaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaiIcacaWGHbWaaSbaaSqaai aaiodaaeqaaOGaeyOeI0IaaGOmaiabeg7aHjaaiMcacqWFLicucaWG 1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadw hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaaakiaawIcacaGLPaaacqGHKjYOaaa@67FB@

                          a 5 x 0 x * 2 + a 6 u 0 u * 2 + a 7 x 1 x * 2 + a 8 u 1 u * 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam yyamaaBaaaleaacaaI1aaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaaicdaaaGccqGHsislcaWG4bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaI2aaabeaakiab=vIiqjaadwhada ahaaWcbeqaaiaaicdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaI QaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyam aaBaaaleaacaaI3aaabeaakiab=vIiqjaadIhadaahaaWcbeqaaiaa igdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa 1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaacaaI 4aaabeaakiab=vIiqjaadwhadaahaaWcbeqaaiaaigdaaaGccqGHsi slcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGOlaaaa@66C6@ (33)

Из (4.20) при m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiabgk ziUkabg6HiLcaa@3A47@  следует сходимость ряда

                                    k=1 k= ( a 1 2α) x k+1 x k 2 +( a 3 2α) u k+1 u k 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaabCaeqale aacaWGRbGaaGypaiaaigdaaeaacaWGRbGaaGypaiabg6HiLcqdcqGH ris5aOWaaeWaaeaacaaIOaGaamyyamaaBaaaleaacaaIXaaabeaaki abgkHiTiaaikdacqaHXoqycaaIPaqeeuuDJXwAKbsr4rNCHbacfaGa e8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccq GHsislcaWG4bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqa beaacaaIYaaaaOGaey4kaSIaaGikaiaadggadaWgaaWcbaGaaG4maa qabaGccqGHsislcaaIYaGaeqySdeMaaGykaiab=vIiqjaadwhadaah aaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCa aaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaaOGa ayjkaiaawMcaaiaai6caaaa@669B@

 Тогда (4.20) эквивалентно неравенству

                 (12α) x m+1 x * 2 + u m+1 u * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaaIYaGaeqySdeMaaGykamaabmaabaqeeuuDJXwAKbsr 4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamyBaiabgUcaRi aaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCa aaleqabaGaamyBaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaeyizImkaaa@579B@

                          a 5 x 0 x * 2 + a 6 u 0 u * 2 + a 7 x 1 x * 2 + a 8 u 1 u * 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam yyamaaBaaaleaacaaI1aaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaaicdaaaGccqGHsislcaWG4bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa ey4kaSIaamyyamaaBaaaleaacaaI2aaabeaakiab=vIiqjaadwhada ahaaWcbeqaaiaaicdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaI QaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyam aaBaaaleaacaaI3aaabeaakiab=vIiqjaadIhadaahaaWcbeqaaiaa igdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa 1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaacaaI 4aaabeaakiab=vIiqjaadwhadaahaaWcbeqaaiaaigdaaaGccqGHsi slcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGOlaaaa@66C6@

 Следовательно, из (4.20) следует: x k x * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@446B@ , u k u * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@4465@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaayg W7caaMb8UaaGiiaiabgkziUkaaiccacaaMb8UaaGzaVlabg6HiLcaa @41C1@ ; последовательность x k x * 2 + u k u * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaarq qr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4bWaaWbaaSqabeaacaWG RbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqn aaCaaaleqabaGaaGOmaaaakiabgUcaRiab=vIiqjaadwhadaahaaWc beqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaO Gae8xjIa1aaWbaaSqabeaacaaIYaaaaaGccaGL7bGaayzFaaaaaa@4DE8@  невозрастающая и ограничена и, по теореме Больцано-Вейерштрасса, существует сходящаяся подпоследовательность x k i , u k i ( x * , u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WG4bWaaWbaaSqabeaacaWGRbWaaSbaaeaacaWGPbaabeaaaaGccaaI SaGaamyDamaaCaaaleqabaGaam4AamaaBaaabaGaamyAaaqabaaaaa GccaGL7bGaayzFaaGaeyOKH4QaaGiiaiaaygW7caaMb8UaaGikaiaa dIhadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqaba GaaGOkaaaakiaaiMcaaaa@4AD4@ , k i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGPbaabeaakiabgkziUkabg6HiLcaa@3B69@  и x k i x * + u k i u * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AamaaBaaa baGaamyAaaqabaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaa aakiab=vIiqjabgUcaRiab=vIiqjaadwhadaahaaWcbeqaaiaadUga daWgaaqaaiaadMgaaeqaaaaakiabgkHiTiaadwhadaahaaWcbeqaai aaiQcaaaGccqWFLicucqGHsgIRcaaIWaaaaa@4E96@ , k i MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGPbaabeaakiabgkziUkabg6HiLcaa@3B69@ ,

                                                 x k i x k i 1 + u k i u k i 1 0, k i . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AamaaBaaa baGaamyAaaqabaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4Aam aaBaaabaGaamyAaaqabaGaeyOeI0IaaGymaaaakiab=vIiqjabgUca Riab=vIiqjaadwhadaahaaWcbeqaaiaadUgadaWgaaqaaiaadMgaae qaaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaadUgadaWgaaqaaiaa dMgaaeqaaiabgkHiTiaaigdaaaGccqWFLicucqGHsgIRcaaIWaGaaG ilaiaaysW7caWGRbWaaSbaaSqaaiaadMgaaeqaaOGaeyOKH4QaeyOh IuQaaGOlaaaa@5CE9@  (4.21)

 Тогда при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@  из второго и четвёртого уравнений (2.1) следуют равенства (2.5), (2.6), эквивалентные характеристике (1.3) седловой точки в терминах оператора проектирования; следовательно, ( x * , u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcaaaa@3BDF@   MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa8hfGaaa@3A75@  седловая точка функции φ(x,u) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcaaaa@3BC6@ , то есть решение задачи (1.1).

Положим x * = x c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOkaaaakiaai2dacaWG4bWaaWbaaSqabeaacaWGJbaa aaaa@3AB8@ , u * = u c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaai2dacaWG1bWaaWbaaSqabeaacaWGJbaa aaaa@3AB2@ , выберем ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaeq yTduMaaGOpaiaaicdaaaa@39F0@  и числа k i 0 =r MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4AamaaBa aaleaacaWGPbWaaSbaaeaacaaIWaaabeaaaeqaaOGaaGypaiaadkha aaa@3AA4@  и rm1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOCaiabgw MiZkaad2gacqGHsislcaaIXaaaaa@3B4E@  так, чтобы выполнялись неравенства

                             x k i x k i 1 2 ε/(4 a 2 2α), u k i u k i 1 2 ε/(4 a 3 2α), x m x c 2 ε/(4+4α), u m u c 2 ε/(4+4α). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaadUgadaWgaaqaaiaadMgaaeqaaaaakiabgkHiTiaadIhadaahaa WcbeqaaiaadUgadaWgaaqaaiaadMgaaeqaaiabgkHiTiaaigdaaaGc cqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHKjYOcqaH1oqzcaaIVa GaaGikaiaaisdacaWGHbWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0Ia aGOmaiabeg7aHjaaiMcacaaISaGae8xjIaLaamyDamaaCaaaleqaba Gaam4AamaaBaaabaGaamyAaaqabaaaaOGaeyOeI0IaamyDamaaCaaa leqabaGaam4AamaaBaaabaGaamyAaaqabaGaeyOeI0IaaGymaaaaki ab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJkabew7aLjaai+ca caaIOaGaaGinaiaadggadaWgaaWcbaGaaG4maaqabaGccqGHsislca aIYaGaeqySdeMaaGykaiaaiYcaaeaacqWFLicucaWG4bWaaWbaaSqa beaacaWGTbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4yaaaaki ab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJkabew7aLjaai+ca caaIOaGaaGinaiabgUcaRiaaisdacqaHXoqycaaIPaGaaGilaiab=v IiqjaadwhadaahaaWcbeqaaiaad2gaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaey izImQaeqyTduMaaG4laiaaiIcacaaI0aGaey4kaSIaaGinaiabeg7a HjaaiMcacaaIUaaaaaaa@900D@ (4.22)

 Просуммируем (4.17) от k=m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaWGTbaaaa@38A0@  до k=N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiaai2 dacaWGobaaaa@3881@  при x * = x c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEamaaCa aaleqabaGaaGOkaaaakiaai2dacaWG4bWaaWbaaSqabeaacaWGJbaa aaaa@3AB8@ , u * = u c MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDamaaCa aaleqabaGaaGOkaaaakiaai2dacaWG1bWaaWbaaSqabeaacaWGJbaa aaaa@3AB2@ , N>rm1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai6 dacaWGYbGaeyyzImRaamyBaiabgkHiTiaaigdaaaa@3CE9@ :

                 x N+1 x c 2 + a 1 x N+1 x N 2 + u N+1 u c 2 + a 3 u N+1 u N 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamOtaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIaamyyamaaBaaaleaa caaIXaaabeaakiab=vIiqjaadIhadaahaaWcbeqaaiaad6eacqGHRa WkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaamOtaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiab=vIiqjaadwhada ahaaWcbeqaaiaad6eacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaa CaaaleqabaGaam4yaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki abgUcaRiaadggadaWgaaWcbaGaaG4maaqabaGccqWFLicucaWG1bWa aWbaaSqabeaacaWGobGaey4kaSIaaGymaaaakiabgkHiTiaadwhada ahaaWcbeqaaiaad6eaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc cqGHRaWkaaa@68F5@

                                                       +α( x m1 x c 2 + u m1 u c 2 )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaeq ySdeMaaGikaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaah aaWcbeqaaiaad2gacqGHsislcaaIXaaaaOGaeyOeI0IaamiEamaaCa aaleqabaGaam4yaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiab gUcaRiab=vIiqjaadwhadaahaaWcbeqaaiaad2gacqGHsislcaaIXa aaaOGaeyOeI0IaamyDamaaCaaaleqabaGaam4yaaaakiab=vIiqnaa CaaaleqabaGaaGOmaaaakiaaiMcacqGHRaWkaaa@543B@

                                 + k=m k=N1 ( a 1 a 2 ) x k+1 x k 2 +( a 3 a 4 ) u k+1 u k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGRbGaaGypaiaad2gaaeaacaWGRbGaaGypaiaad6ea cqGHsislcaaIXaaaniabggHiLdGcdaqadaqaaiaaiIcacaWGHbWaaS baaSqaaiaaigdaaeqaaOGaeyOeI0IaamyyamaaBaaaleaacaaIYaaa beaakiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4bWaaW baaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHRaWkcaaIOaGaamyyamaaBaaaleaacaaIZaaabeaakiabgkHiTiaa dggadaWgaaWcbaGaaGinaaqabaGccaaIPaGae8xjIaLaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaeyizImkaaa@68B7@

                             x m x c 2 + u m u c 2 +α( x N x c 2 + u N u c 2 )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImAeeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamyB aaaakiabgkHiTiaadIhadaahaaWcbeqaaiaadogaaaGccqWFLicuda ahaaWcbeqaaiaaikdaaaGccqGHRaWkcqWFLicucaWG1bWaaWbaaSqa beaacaWGTbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaam4yaaaaki ab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgUcaRiabeg7aHjaaiIca cqWFLicucaWG4bWaaWbaaSqabeaacaWGobaaaOGaeyOeI0IaamiEam aaCaaaleqabaGaam4yaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaa kiabgUcaRiab=vIiqjaadwhadaahaaWcbeqaaiaad6eaaaGccqGHsi slcaWG1bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaaGykaiabgUcaRaaa@63F2@

                                                     + a 2 x m x m1 2 + a 4 u m u m1 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaam yyamaaBaaaleaacaaIYaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadIhadaahaaWcbeqaaiaad2gaaaGccqGHsislcaWG4bWaaW baaSqabeaacaWGTbGaeyOeI0IaaGymaaaakiab=vIiqnaaCaaaleqa baGaaGOmaaaakiabgUcaRiaadggadaWgaaWcbaGaaGinaaqabaGccq WFLicucaWG1bWaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamyDamaa CaaaleqabaGaamyBaiabgkHiTiaaigdaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccaaIUaaaaa@54D3@ (4.23)

 Третье, четвёртое слагаемые в правой части (4.23) оценим с помощью правого неравенства (3.3) при ε=1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaigdaaaa@3920@ :

                                       α x N x c 2 2α( x N x N+1 2 + x N+1 x c 2 ), α u N u c 2 2α( u N u N+1 2 + u N+1 u c 2 ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiabeg7aHfbbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaah aaWcbeqaaiaad6eaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGJb aaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQaaGOmaiab eg7aHjaaiIcacqWFLicucaWG4bWaaWbaaSqabeaacaWGobaaaOGaey OeI0IaamiEamaaCaaaleqabaGaamOtaiabgUcaRiaaigdaaaGccqWF LicudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqWFLicucaWG4bWaaW baaSqabeaacaWGobGaey4kaSIaaGymaaaakiabgkHiTiaadIhadaah aaWcbeqaaiaadogaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGcca aIPaGaaGilaaqaaiabeg7aHjab=vIiqjaadwhadaahaaWcbeqaaiaa d6eaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa 1aaWbaaSqabeaacaaIYaaaaOGaeyizImQaaGOmaiabeg7aHjaaiIca cqWFLicucaWG1bWaaWbaaSqabeaacaWGobaaaOGaeyOeI0IaamyDam aaCaaaleqabaGaamOtaiabgUcaRiaaigdaaaGccqWFLicudaahaaWc beqaaiaaikdaaaGccqGHRaWkcqWFLicucaWG1bWaaWbaaSqabeaaca WGobGaey4kaSIaaGymaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaa dogaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIPaGaaGilaa aaaaa@8392@

 пятое и шестое слагаемые в левой части (4.23) оценим с помощью левого неравенства (3.3) при ε=1/2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiaaigdacaaIVaGaaGOmaaaa@3A95@ :

                                     α x m1 x c 2 α( x m1 x m 2 /2α x m x c 2 , α u m1 u c 2 α( u m1 u m 2 /2α u m u c 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiabeg7aHfbbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaah aaWcbeqaaiaad2gacqGHsislcaaIXaaaaOGaeyOeI0IaamiEamaaCa aaleqabaGaam4yaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiab gwMiZkabeg7aHjaaiIcacqWFLicucaWG4bWaaWbaaSqabeaacaWGTb GaeyOeI0IaaGymaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaad2ga aaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIVaGaaGOmaiabgk HiTiabeg7aHjab=vIiqjaadIhadaahaaWcbeqaaiaad2gaaaGccqGH sislcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabe aacaaIYaaaaOGaaGilaaqaaiabeg7aHjab=vIiqjaadwhadaahaaWc beqaaiaad2gacqGHsislcaaIXaaaaOGaeyOeI0IaamyDamaaCaaale qabaGaam4yaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgwMi Zkabeg7aHjaaiIcacqWFLicucaWG1bWaaWbaaSqabeaacaWGTbGaey OeI0IaaGymaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaad2gaaaGc cqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIVaGaaGOmaiabgkHiTi abeg7aHjab=vIiqjaadwhadaahaaWcbeqaaiaad2gaaaGccqGHsisl caWG1bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaaca aIYaaaaOGaaGOlaaaaaaa@883A@

 С учётом их, и неравенств 0< a 1 2α< a 1 a 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0IaaGOmaiabeg7a HjaaiYdacaWGHbWaaSbaaSqaaiaaigdaaeqaaOGaeyOeI0Iaamyyam aaBaaaleaacaaIYaaabeaaaaa@41EE@ , 12α>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiabgk HiTiaaikdacqaHXoqycaaI+aGaaGimaaaa@3B7C@ , 0< a 3 2α< a 3 a 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGimaiaaiY dacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0IaaGOmaiabeg7a HjaaiYdacaWGHbWaaSbaaSqaaiaaiodaaeqaaOGaeyOeI0Iaamyyam aaBaaaleaacaaI0aaabeaaaaa@41F4@ , верных при условиях (4.1), и подбора подобных, из (4.23) следует

                 (12α) x N+1 x c 2 + u N+1 u c 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaaIYaGaeqySdeMaaGykamaabmaabaqeeuuDJXwAKbsr 4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamOtaiabgUcaRi aaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCa aaleqabaGaamOtaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaey4kaScaaa@56F2@

                                 + k=m k=N ( a 1 2α) x k+1 x k 2 +( a 3 2α) u k+1 u k 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSYaaa bCaeqaleaacaWGRbGaaGypaiaad2gaaeaacaWGRbGaaGypaiaad6ea a0GaeyyeIuoakmaabmaabaGaaGikaiaadggadaWgaaWcbaGaaGymaa qabaGccqGHsislcaaIYaGaeqySdeMaaGykaebbfv3ySLgzGueE0jxy aGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXa aaaOGaeyOeI0IaamiEamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaa CaaaleqabaGaaGOmaaaakiabgUcaRiaaiIcacaWGHbWaaSbaaSqaai aaiodaaeqaaOGaeyOeI0IaaGOmaiabeg7aHjaaiMcacqWFLicucaWG 1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadw hadaahaaWcbeqaaiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikda aaaakiaawIcacaGLPaaacqGHKjYOaaa@6813@

                        (1+α)( x m x c 2 + u m u c 2 )+( a 2 α/2) x m x m1 2 + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaGaaGikaebbfv3ySLgzGueE 0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaad2gaaaGccqGHsi slcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCaaaleqabaGaamyBaa aakiabgkHiTiaadwhadaahaaWcbeqaaiaadogaaaGccqWFLicudaah aaWcbeqaaiaaikdaaaGccaaIPaGaey4kaSIaaGikaiaadggadaWgaa WcbaGaaGOmaaqabaGccqGHsislcqaHXoqycaaIVaGaaGOmaiaaiMca cqWFLicucaWG4bWaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamiEam aaCaaaleqabaGaamyBaiabgkHiTiaaigdaaaGccqWFLicudaahaaWc beqaaiaaikdaaaGccqGHRaWkaaa@66EC@

                                                               +( a 4 α/2) u m u m1 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadggadaWgaaWcbaGaaGinaaqabaGccqGHsislcqaHXoqycaaI VaGaaGOmaiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG1b WaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGa amyBaiabgkHiTiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikdaaa GccaaIUaaaaa@4D73@

 Отсюда с учётом (4.22), (4.23) и рассуждений и выкладок после (4.20), получим:

                 (12α) x N+1 x c 2 + u N+1 u c 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaaig dacqGHsislcaaIYaGaeqySdeMaaGykamaabmaabaqeeuuDJXwAKbsr 4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaamOtaiabgUcaRi aaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCa aaleqabaGaamOtaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaaGcca GLOaGaayzkaaGaeyizImkaaa@57C5@

                                                    (1+α)( x m x c 2 + u m u c 2 )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkcqaHXoqycaaIPaGaaGikaebbfv3ySLgzGueE 0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqaaiaad2gaaaGccqGHsi slcaWG4bWaaWbaaSqabeaacaWGJbaaaOGae8xjIa1aaWbaaSqabeaa caaIYaaaaOGaey4kaSIae8xjIaLaamyDamaaCaaaleqabaGaamyBaa aakiabgkHiTiaadwhadaahaaWcbeqaaiaadogaaaGccqWFLicudaah aaWcbeqaaiaaikdaaaGccaaIPaGaey4kaScaaa@54C0@

                                +( a 2 α/2) x m x m1 2 +( a 4 α/2) u m u m1 2 ε. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaaG ikaiaadggadaWgaaWcbaGaaGOmaaqabaGccqGHsislcqaHXoqycaaI VaGaaGOmaiaaiMcarqqr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4b WaaWbaaSqabeaacaWGTbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGa amyBaiabgkHiTiaaigdaaaGccqWFLicudaahaaWcbeqaaiaaikdaaa GccqGHRaWkcaaIOaGaamyyamaaBaaaleaacaaI0aaabeaakiabgkHi Tiabeg7aHjaai+cacaaIYaGaaGykaiab=vIiqjaadwhadaahaaWcbe qaaiaad2gaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaWGTbGaeyOe I0IaaGymaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJk abew7aLjaai6caaaa@62FB@

 Из этого неравенства и предыдущих рассуждений после (4.20), следует, что вся последовательность x k , u k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WG4bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaaWcbeqa aiaadUgaaaaakiaawUhacaGL9baaaaa@3D23@  сходится к седловой точке задачи (1.1), x k , u k ( x c , u c )=( x * , u * ) Q * × U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca WG4bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaaWcbeqa aiaadUgaaaaakiaawUhacaGL9baacaaIGaGaaGzaVlabgkziUkaaic cacaaMb8UaaGikaiaadIhadaahaaWcbeqaaiaadogaaaGccaaISaGa amyDamaaCaaaleqabaGaam4yaaaakiaaiMcacaaI9aGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcacqGHiiIZcaWGrbWaaSbaaSqaaiaaiQcaaeqaaO Gaey41aqRaamyvamaaCaaaleqabaGaaGOkaaaaaaa@578D@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ , ибо пространства E n MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamOBaaaaaaa@37E1@  и E m MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyramaaCa aaleqabaGaamyBaaaaaaa@37E0@  полные, неравенства (36) выполняются для седловой точки ( x * , u * ) Q * × U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaaiMcacqGHiiIZcaWGrbWaaSbaaSqaaiaaiQcaaeqaaO Gaey41aqRaamyvamaaCaaaleqabaGaaGOkaaaaaaa@42F5@  и последовательность x k x * 2 + u k u * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaarq qr1ngBPrgifHhDYfgaiuaacqWFLicucaWG4bWaaWbaaSqabeaacaWG RbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqn aaCaaaleqabaGaaGOmaaaakiabgUcaRiab=vIiqjaadwhadaahaaWc beqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaO Gae8xjIa1aaWbaaSqabeaacaaIYaaaaaGccaGL7bGaayzFaaaaaa@4DE8@  монотонна и ограничена.

Из сходимости по норме для аргумента, как известно из функционального анализа, следует сходимость по функционалу; прямое доказательство этого факта имеется, например, в работе [7].

Доказательство завершено.

Следствие 4.1. Поскольку по теореме 4.1 (расстояние до точки минимума монотонно убывает) последоательность { x k , u k } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqabaGa am4Aaaaakiaai2haaaa@3CFE@  сходится монотонно, то имеют место неравенства

                                          x k+1 x * 2 x k x * 2 x 0 x * 2 , u k+1 u * 2 u k u * 2 u 0 u * 2 , x k1 x k 2 x k x k+1 2 x k+1 x k+2 2 , u k1 u k 2 u k u k+1 2 u k+1 u k+2 2 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqa baGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabe aacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQa e8xjIaLaamiEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadIhada ahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc cqGHKjYOcqWIVlctcqGHKjYOcqWFLicucaWG4bWaaWbaaSqabeaaca aIWaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIi qnaaCaaaleqabaGaaGOmaaaakiaaiYcaaeaacqWFLicucaWG1bWaaW baaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaadwhadaah aaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccq GHKjYOcqWFLicucaWG1bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0Ia amyDamaaCaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaG OmaaaakiabgsMiJkabl+UimjabgsMiJkab=vIiqjaadwhadaahaaWc beqaaiaaicdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaO Gae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaaGilaaqaaiab=vIiqjaa dIhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaOGaeyOeI0Iaam iEamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCaaaleqabaGaaGOm aaaakiabgwMiZkab=vIiqjaadIhadaahaaWcbeqaaiaadUgaaaGccq GHsislcaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiabgwMiZkab=vIiqjaadIhada ahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaa CaaaleqabaGaam4AaiabgUcaRiaaikdaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccqGHLjYScqWIVlctcaaISaaabaGae8xjIaLaamyD amaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGccqGHsislcaWG1b WaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaa aOGaeyyzImRae8xjIaLaamyDamaaCaaaleqabaGaam4Aaaaakiabgk HiTiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaeyyzImRae8xjIaLaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaWba aSqabeaacaWGRbGaey4kaSIaaGOmaaaakiab=vIiqnaaCaaaleqaba GaaGOmaaaakiabgwMiZkabl+Uimjaai6caaaaaaa@CCDA@

5.      Оценка сверхлинейной скорости сходимости ПОДЭМКСМ

Сначала получим вспомогательное неравенство, пользуясь неравенством (3.3).

Лемма 5.1. Если последовательность { x k } x * Q * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaadUgaaaGccaaI9bGaeyOKH4QaamiEamaaCaaa leqabaGaaGOkaaaakiabgIGiolaadgfadaWgaaWcbaGaaGOkaaqaba aaaa@4136@  построена методом класса ПОДМ или другим методом минимизации, то для приращения y k = x k x k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyEamaaCa aaleqabaGaam4Aaaaakiaai2dacaWG4bWaaWbaaSqabeaacaWGRbaa aOGaeyOeI0IaamiEamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaa aaaa@3FB6@ , (k1) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGikaiaadU gacqGHLjYScaaIXaGaaGykaaaa@3ACD@  аргумента функции f(x) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaaiI cacaWG4bGaaGykaaaa@3944@  имеет место формула

                                             y k 1(1 ε 1 )(1 ε 1 1 ) 1ε+(1 ε 1 )(1 ε 1 ) 1/2 x k x * , 0<ε<1, ε 1 >1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadMhadaahaaWcbeqa aiaadUgaaaGccqWFLicucqGHKjYOdaqadaqaamaalaaabaGaaGymai abgkHiTiaaiIcacaaIXaGaeyOeI0IaeqyTdu2aaWbaaSqabeaacqGH sislcaaIXaaaaOGaaGykaiaaiIcacaaIXaGaeyOeI0IaeqyTdu2aa0 baaSqaaiaaigdaaeaacqGHsislcaaIXaaaaOGaaGykaaqaaiaaigda cqGHsislcqaH1oqzcqGHRaWkcaaIOaGaaGymaiabgkHiTiabew7aLn aaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiMcacaaIOaGaaGymaiab gkHiTiabew7aLnaaBaaaleaacaaIXaaabeaakiaaiMcaaaaacaGLOa GaayzkaaWaaWbaaSqabeaacaaIXaGaaG4laiaaikdaaaGccqWFLicu caWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaale qabaGaaGOkaaaakiab=vIiqjaaiYcaaeaacaaIWaGaaGipaiabew7a LjaaiYdacaaIXaGaaGilaiabew7aLnaaBaaaleaacaaIXaaabeaaki aai6dacaaIXaGaaGOlaaaaaaa@76BC@ (5.1)

 Доказательство. Из левого неравенства (3.3) при u= x k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaWG4bWaaWbaaSqabeaacaWGRbaaaaaa@39D2@ , v= x k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2 dacaWG4bWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGymaaaaaaa@3B7B@ , w= x * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiaai2 dacaWG4bWaaWbaaSqabeaacaaIQaaaaaaa@3998@ , следует неравенство x k x * 2 (1ε) y k 2 +(1 ε 1 ) x k1 x * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbe qaaiaaikdaaaGccqGHLjYScaaIOaGaaGymaiabgkHiTiabew7aLjaa iMcacqWFLicucaWG5bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaW baaSqabeaacaaIYaaaaOGaey4kaSIaaGikaiaaigdacqGHsislcqaH 1oqzdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIPaGae8xjIaLaam iEamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGccqGHsislcaWG 4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYa aaaaaa@5FB8@ , ε>0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG Opaiaaicdaaaa@3920@ . Отсюда имеем y k 2 1 1ε x k x * 2 1 ε 1 1ε x k1 x * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyEamaaCaaaleqabaGaam4Aaaaakiab =vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJoaalaaabaGaaGymaa qaaiaaigdacqGHsislcqaH1oqzaaGae8xjIaLaamiEamaaCaaaleqa baGaam4AaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccq WFLicudaahaaWcbeqaaiaaikdaaaGccqGHsisldaWcaaqaaiaaigda cqGHsislcqaH1oqzdaahaaWcbeqaaiabgkHiTiaaigdaaaaakeaaca aIXaGaeyOeI0IaeqyTdugaaiab=vIiqjaadIhadaahaaWcbeqaaiaa dUgacqGHsislcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaG Okaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaaaa@6112@ , ε1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaey iyIKRaaGymaaaa@3A20@ . Применяя еще раз левое неравенство (3.3) при u= x k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaWG4bWaaWbaaSqabeaacaWGRbGaeyOeI0IaaGymaaaaaaa@3B7A@ , v= x k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2 dacaWG4bWaaWbaaSqabeaacaWGRbaaaaaa@39D3@ , w= x * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Daiaai2 dacaWG4bWaaWbaaSqabeaacaaIQaaaaaaa@3998@ , ε= ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypaiabew7aLnaaBaaaleaacaaIXaaabeaakiaai6dacaaIWaaaaa@3C7F@ , получим x k1 x * 2 (1 ε 1 ) x k1 x k 2 +(1 ε 1 1 ) x k x * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgkHi TiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyyzImRaaGikaiaaigdacqGH sislcqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaIPaGae8xjIaLaam iEamaaCaaaleqabaGaam4AaiabgkHiTiaaigdaaaGccqGHsislcaWG 4bWaaWbaaSqabeaacaWGRbaaaOGae8xjIa1aaWbaaSqabeaacaaIYa aaaOGaey4kaSIaaGikaiaaigdacqGHsislcqaH1oqzdaqhaaWcbaGa aGymaaqaaiabgkHiTiaaigdaaaGccaaIPaGae8xjIaLaamiEamaaCa aaleqabaGaam4AaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQca aaGccqWFLicudaahaaWcbeqaaiaaikdaaaaaaa@661C@ , ε 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaaGOpaiaaicdaaaa@3A11@ . Подставим его в правую часть предыдущего неравенства и выберем подходящие интервалы параметров:

y k 2 1 1ε x k x * 2 (1 ε 1 )(1 ε 1 ) 1ε x k1 x k 2 (1 ε 1 )(1 ε 1 1 ) 1ε x k x * 2 , 0<ε<1, ε 1 >1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadMhadaahaaWcbeqa aiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHKjYOda WcaaqaaiaaigdaaeaacaaIXaGaeyOeI0IaeqyTdugaaiab=vIiqjaa dIhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG4bWaaWbaaSqabe aacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyOeI0Ya aSaaaeaacaaIOaGaaGymaiabgkHiTiabew7aLnaaCaaaleqabaGaey OeI0IaaGymaaaakiaaiMcacaaIOaGaaGymaiabgkHiTiabew7aLnaa BaaaleaacaaIXaaabeaakiaaiMcaaeaacaaIXaGaeyOeI0IaeqyTdu gaaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaa aOGaeyOeI0IaamiEamaaCaaaleqabaGaam4Aaaaakiab=vIiqnaaCa aaleqabaGaaGOmaaaakiabgkHiTmaalaaabaGaaGikaiaaigdacqGH sislcqaH1oqzdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIPaGaaG ikaiaaigdacqGHsislcqaH1oqzdaqhaaWcbaGaaGymaaqaaiabgkHi TiaaigdaaaGccaaIPaaabaGaaGymaiabgkHiTiabew7aLbaacqWFLi cucaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaa leqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiY caaeaacaaIWaGaaGipaiabew7aLjaaiYdacaaIXaGaaGilaiaaysW7 cqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaI+aGaaGymaiaai6caaa aaaa@8F34@

 Приведём подобные и получим неравенство

                    1+ (1 ε 1 )(1 ε 1 ) 1ε y k 2 1 1ε (1 ε 1 )(1 ε 1 1 ) 1ε x k x * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeqaaa qaamaabmaabaGaaGymaiabgUcaRmaalaaabaGaaGikaiaaigdacqGH sislcqaH1oqzdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIPaGaaG ikaiaaigdacqGHsislcqaH1oqzdaWgaaWcbaGaaGymaaqabaGccaaI PaaabaGaaGymaiabgkHiTiabew7aLbaaaiaawIcacaGLPaaarqqr1n gBPrgifHhDYfgaiuaacqWFLicucaWG5bWaaWbaaSqabeaacaWGRbaa aOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizIm6aaeWaaeaada WcaaqaaiaaigdaaeaacaaIXaGaeyOeI0IaeqyTdugaaiabgkHiTmaa laaabaGaaGikaiaaigdacqGHsislcqaH1oqzdaahaaWcbeqaaiabgk HiTiaaigdaaaGccaaIPaGaaGikaiaaigdacqGHsislcqaH1oqzdaqh aaWcbaGaaGymaaqaaiabgkHiTiaaigdaaaGccaaIPaaabaGaaGymai abgkHiTiabew7aLbaaaiaawIcacaGLPaaacqWFLicucaWG4bWaaWba aSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaaiYcaaaaaaa@750A@

 или

                                              y k 2 1(1 ε 1 )(1 ε 1 1 ) 1ε+(1 ε 1 )(1 ε 1 ) x k x * 2 , 0<ε<1, ε 1 >1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadMhadaahaaWcbeqa aiaadUgaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccqGHKjYOda WcaaqaaiaaigdacqGHsislcaaIOaGaaGymaiabgkHiTiabew7aLnaa CaaaleqabaGaeyOeI0IaaGymaaaakiaaiMcacaaIOaGaaGymaiabgk HiTiabew7aLnaaDaaaleaacaaIXaaabaGaeyOeI0IaaGymaaaakiaa iMcaaeaacaaIXaGaeyOeI0IaeqyTduMaey4kaSIaaGikaiaaigdacq GHsislcqaH1oqzdaahaaWcbeqaaiabgkHiTiaaigdaaaGccaaIPaGa aGikaiaaigdacqGHsislcqaH1oqzdaWgaaWcbaGaaGymaaqabaGcca aIPaaaaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgaaaGccqGHsisl caWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaaca aIYaaaaOGaaGilaaqaaiaaicdacaaI8aGaeqyTduMaaGipaiaaigda caaISaGaaGjbVlabew7aLnaaBaaaleaacaaIXaaabeaakiaai6daca aIXaGaaGOlaaaaaaa@763F@  (5.2)

 Для (5.2) выбраны интервалы значений параметров ε, ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ilaiabew7aLnaaBaaaleaacaaIXaaabeaaaaa@3AE2@  так, чтобы иметь положительный коэффициент в правой части (5.1); из (5.2) следует неравенство (5.1).

Доказательство завершено.

Замечание 5.1. Теоретически в (5.1) годны все значения параметров ε MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdugaaa@379E@ , ε 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaaaa@3885@  из указанных интервалов, но в практике применения разумно брать их не слишком большими или не слишком малыми (то есть не слишком близкими к границам допустимого для эпсилон интервала).

Например, при 1) ε= 3 4 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypamaalaaabaGaaG4maaqaaiaaisdaaaaaaa@39F0@ , ε 1 =2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaaGypaiaaikdaaaa@3A12@  (или ε= 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypamaalaaabaGaaGOmaaqaaiaaiodaaaaaaa@39EE@ , ε 1 = 3 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaaGypamaalaaabaGaaG4maaqaaiaaikda aaaaaa@3ADF@  ), 2) ε= 1 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypamaalaaabaGaaGymaaqaaiaaikdaaaaaaa@39EC@ , ε 1 = 3 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaaGypamaalaaabaGaaG4maaqaaiaaikda aaaaaa@3ADF@ , а также 3) ε= 2 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTduMaaG ypamaalaaabaGaaGOmaaqaaiaaiodaaaaaaa@39EE@ , ε 1 =3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyTdu2aaS baaSqaaiaaigdaaeqaaOGaaGypaiaaiodaaaa@3A13@ , из (5.1) имеем соответственно:

                 1) y k 2 x k x * ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaiM cacaaMe8EeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyEamaaCaaa leqabaGaam4Aaaaakiab=vIiqjabgsMiJoaakaaabaGaaGOmaaWcbe aakiab=vIiqjaadIhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG 4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIaLaaG4oaaaa@4C77@

                 2) y k 2 3 x k x * ; MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGOmaiaaiM cacaaMe8EeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyEamaaCaaa leqabaGaam4Aaaaakiab=vIiqjabgsMiJoaalaaabaGaaGOmaaqaam aakaaabaGaaG4maaWcbeaaaaGccqWFLicucaWG4bWaaWbaaSqabeaa caWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=v IiqjaaiUdaaaa@4D45@ (5.3)

                 3) y k x k x * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4maiaaiM cacaaMe8EeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyEamaaCaaa leqabaGaam4Aaaaakiab=vIiqjabgsMiJkab=vIiqjaadIhadaahaa WcbeqaaiaadUgaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaa aOGae8xjIaLaaGOlaaaa@4B8B@

Оценку сверхлинейной скорости сходимости метода (2.1), (4.1) для выпукло вогнутой функции можно получить, если дополнить условия теоремы 5.1 предположением, что функция φ(x,u) C 2,1 (Q×U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqa beaacaaIYaGaaGilaiaaigdaaaGccaaIOaGaamyuaiabgEna0kaadw facaaIPaaaaa@45A2@ , и заметить, что в силу теоремы 1 и следствия: x k x * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@446B@ , z k x * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@446D@ , и u k x * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@4468@ , w k u * 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaam4DamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHsgIRca aIWaaaaa@4467@ , при y k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyEamaaCaaaleqabaGaam4Aaaaakiab =vIiqjabgkziUkaaicdaaaa@4197@ , v k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamODamaaCaaaleqabaGaam4Aaaaakiab =vIiqjabgkziUkaaicdaaaa@4194@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ .

Тогда, ввиду непрерывности частных гессианов по переменным x MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiEaaaa@36F4@  и u MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaaaa@36F1@ , при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@

                                                      2 φ xx ( x k , u k ) 2 φ xx ( x * , u k )0, 2 φ xx ( z k , u k ) 2 φ xx ( x * , u k )0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjabgEGirpaaCaaaleqa baGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG4bGaamiEaaqabaGcca aIOaGaamiEamaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWba aSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqaba GaaGOmaaaakiabeA8aQnaaBaaaleaacaWG4bGaamiEaaqabaGccaaI OaGaamiEamaaCaaaleqabaGaaGOkaaaakiaaiYcacaWG1bWaaWbaaS qabeaacaWGRbaaaOGaaGykaiab=vIiqjabgkziUkaaicdacaaISaaa baGae8xjIaLaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaS baaSqaaiaadIhacaWG4baabeaakiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGilaiaadwhadaahaaWcbeqaaiaadUgaaaGccaaIPa GaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaSba aSqaaiaadIhacaWG4baabeaakiaaiIcacaWG4bWaaWbaaSqabeaaca aIQaaaaOGaaGilaiaadwhadaahaaWcbeqaaiaadUgaaaGccaaIPaGa e8xjIaLaeyOKH4QaaGimaiaaiYcaaaaaaa@7A46@ (5.4)

                                                    2 φ uu ( x k , u k ) 2 φ uu ( x k , u * )0, 2 φ uu ( x k , w k ) 2 φ uu ( x k , u * )0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjabgEGirpaaCaaaleqa baGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG1bGaamyDaaqabaGcca aIOaGaamiEamaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWba aSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqaba GaaGOmaaaakiabeA8aQnaaBaaaleaacaWG1bGaamyDaaqabaGccaaI OaGaamiEamaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWbaaS qabeaacaaIQaaaaOGaaGykaiab=vIiqjabgkziUkaaicdacaaISaaa baGae8xjIaLaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaS baaSqaaiaadwhacaWG1baabeaakiaaiIcacaWG4bWaaWbaaSqabeaa caWGRbaaaOGaaGilaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaIPa GaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaSba aSqaaiaadwhacaWG1baabeaakiaaiIcacaWG4bWaaWbaaSqabeaaca WGRbaaaOGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGa e8xjIaLaeyOKH4QaaGimaiaai6caaaaaaa@7A30@ (5.5)

 Предположим, что x Q * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadIhacqGHiiIZcaWGrbWaaSbaaSqaaiaaiQcaaeqaaaaa@3C8B@ , как и в (5.4) u k U MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadwhadaahaaWcbeqaaiaadUgaaaGccqGHiiIZcaWGvbaaaa@3CD3@ , при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@  имеем

                                     A( z k )A( x * )0,A( z k ) 2 φ xx (x, u k )0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyqaiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiaadgeacaaIOaGaamiEamaaCaaale qabaGaaGOkaaaakiaaiMcacqWFLicucqGHsgIRcaaIWaGaaGilaiaa ywW7cqWFLicucaWGbbGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaa GccaaIPaGaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOX dO2aaSbaaSqaaiaadIhacaWG4baabeaakiaaiIcacaWG4bGaaGilai aadwhadaahaaWcbeqaaiaadUgaaaGccaaIPaGae8xjIaLaeyOKH4Qa aGimaiaaiYcacaaMe8oaaa@6306@ (5.6)

  u U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadwhacqGHiiIZcaWGvbWaaWbaaSqabeaacaaIQaaaaaaa@3C8D@ ; как и в (5.5) x k Q MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadIhadaahaaWcbeqaaiaadUgaaaGccqGHiiIZcaWGrbaaaa@3CD2@ , при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@  имеем

                                    B( w k )B( u * )0,B( w k ) 2 φ uu ( x k ,u)0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOqaiaaiIcacaWG3bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiaadkeacaaIOaGaamyDamaaCaaale qabaGaaGOkaaaakiaaiMcacqWFLicucqGHsgIRcaaIWaGaaGilaiaa ywW7cqWFLicucaWGcbGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaa GccaaIPaGaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOX dO2aaSbaaSqaaiaadwhacaWG1baabeaakiaaiIcacaWG4bWaaWbaaS qabeaacaWGRbaaaOGaaGilaiaadwhacaaIPaGae8xjIaLaeyOKH4Qa aGimaiaai6caaaa@616F@ (5.7)

Теорема 5.1. Пусть выполнены все условия теоремы 4.1, леммы 5.1 и, кроме того:

1) функция φ(x,u) C 2,1 (Q×U) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdOMaaG ikaiaadIhacaaISaGaamyDaiaaiMcacqGHiiIZcaWGdbWaaWbaaSqa beaacaaIYaGaaGilaiaaigdaaaGccaaIOaGaamyuaiabgEna0kaadw facaaIPaaaaa@45A2@ ;

2) для последовательности { x k , u k }( x * , u * ) W * = Q * × U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqabaGa am4Aaaaakiaai2hacqGHsgIRcaaIOaGaamiEamaaCaaaleqabaGaaG OkaaaakiaaiYcacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiab gIGiolaadEfadaWgaaWcbaGaaGOkaaqabaGccaaI9aGaamyuamaaBa aaleaacaaIQaaabeaakiabgEna0kaadwfadaahaaWcbeqaaiaaiQca aaaaaa@4E76@ , вырабатываемой ПОДЭМКСМ (2.1)-(2.4), (4.1), существует номер N>1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaiaai6 dacaaIXaaaaa@384D@  такой, что β k =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadUgaaeqaaOGaaGypaiaaigdaaaa@3A40@ , λ k =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGypaiaaigdaaaa@3A53@  при kN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaad6eaaaa@3980@ ;

3) выполнены соотношения (5.4), (5.5) и (5.6), (5.7).

Тогда последовательность { x k , u k } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqabaGa am4Aaaaakiaai2haaaa@3CFE@ , определяемая ПОДЭМКСМ (2.1), (4.1), со сверхлинейной скоростью сходится к решению задачи (1.1) при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@  и

                                x k+1 x * + u k+1 u * q 1k x k x * + q 2k u k u * , q 1k =A( z k ) 2 φ xx ( ξ k , u k )(1+ 2 α)/m0, q 2k =B( w k ) 2 φ uu ( z k , η k )(1+ 2 α)/p0, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabmqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgUcaRiab=vIiqjaadwhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgsMiJkaadghadaWgaaWcbaGaaGymaiaa dUgaaeqaaOGae8xjIaLaamiEamaaCaaaleqabaGaam4Aaaaakiabgk HiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHRaWkcaWG XbWaaSbaaSqaaiaaikdacaWGRbaabeaakiab=vIiqjaadwhadaahaa WcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaa aOGae8xjIaLaaGilaaqaaiaadghadaWgaaWcbaGaaGymaiaadUgaae qaaOGaaGypaiab=vIiqjaadgeacaaIOaGaamOEamaaCaaaleqabaGa am4AaaaakiaaiMcacqGHsislcqGHhis0daahaaWcbeqaaiaaikdaaa GccqaHgpGAdaWgaaWcbaGaamiEaiaadIhaaeqaaOGaaGikaiabe67a 4naaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWbaaSqabeaaca WGRbaaaOGaaGykaiab=vIiqjaaiIcacaaIXaGaey4kaSYaaOaaaeaa caaIYaaaleqaaOGaeqySdeMaaGykaiaai+cacaWGTbGaeyOKH4QaaG imaiaaiYcaaeaacaWGXbWaaSbaaSqaaiaaikdacaWGRbaabeaakiaa i2dacqWFLicucaWGcbGaaGikaiaadEhadaahaaWcbeqaaiaadUgaaa GccaaIPaGaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOX dO2aaSbaaSqaaiaadwhacaWG1baabeaakiaaiIcacaWG6bWaaWbaaS qabeaacaWGRbaaaOGaaGilaiabeE7aOnaaCaaaleqabaGaam4Aaaaa kiaaiMcacqWFLicucaaIOaGaaGymaiabgUcaRmaakaaabaGaaGOmaa Wcbeaakiabeg7aHjaaiMcacaaIVaGaamiCaiabgkziUkaaicdacaaI Saaaaaaa@AAB0@ (5.8)

 где ξ k = z k θ( z k x * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOVdG3aaW baaSqabeaacaWGRbaaaOGaaGypaiaadQhadaahaaWcbeqaaiaadUga aaGccqGHsislcqaH4oqCcaaIOaGaamOEamaaCaaaleqabaGaam4Aaa aakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaIPaaaaa@44D1@ , k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaaigdaaaa@3968@ , η k = w k θ( w k u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4TdG2aaW baaSqabeaacaWGRbaaaOGaaGypaiaadEhadaahaaWcbeqaaiaadUga aaGccqGHsislcqaH4oqCcaaIOaGaam4DamaaCaaaleqabaGaam4Aaa aakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaaaaa@44B1@ , θ[0;1] MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqiUdeNaey icI4SaaG4waiaaicdacaaI7aGaaGymaiaai2faaaa@3D37@ .

 Доказательство. Результаты и выкладки теоремы 4.1 здесь справедливы. Запишем неравенство (4.3) в форме

                      ( x k+1 v, x k+1 v)+( z k v,v x k+1 )β A k 1 φ x ( z k , u k ),v x k+1 , x k+1 v 2 ( z k v, x k+1 v)+β A k 1 φ x ( z k , u k ),v x k+1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaiaaiIcacaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaa kiabgkHiTiaadAhacaaISaGaamiEamaaCaaaleqabaGaam4AaiabgU caRiaaigdaaaGccqGHsislcaWG2bGaaGykaiabgUcaRiaaiIcacaWG 6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamODaiaaiYcacaWG2b GaeyOeI0IaamiEamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGc caaIPaGaeyizImQaeqOSdi2aaeWaaeaacaWGbbWaa0baaSqaaiaadU gaaeaacqGHsislcaaIXaaaaOGaey4bIeTaeqOXdO2aaSbaaSqaaiaa dIhaaeqaaOGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaISa GaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaamODaiab gkHiTiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaaGcca GLOaGaayzkaaGaaGilaaqaaebbfv3ySLgzGueE0jxyaGqbaiab=vIi qjaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0 IaamODaiab=vIiqnaaCaaaleqabaGaaGOmaaaakiabgsMiJkaaiIca caWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamODaiaaiYcaca WG4bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHiTiaa dAhacaaIPaGaey4kaSIaeqOSdi2aaeWaaeaacaWGbbWaa0baaSqaai aadUgaaeaacqGHsislcaaIXaaaaOGaey4bIeTaeqOXdO2aaSbaaSqa aiaadIhaaeqaaOGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGcca aISaGaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaamOD aiabgkHiTiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaa GccaGLOaGaayzkaaGaaGilaaaaaaa@9F0B@

  k1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaaigdaaaa@3968@ , vQ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiabgI Giolaadgfaaaa@394C@ . Положим здесь v= x * Q * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamODaiaai2 dacaWG4bWaaWbaaSqabeaacaaIQaaaaOGaeyicI4SaamyuamaaBaaa leaacaaIQaaabeaaaaa@3CDB@  и сложим с неравенством A 1 ( x * ) φ x ( x * , u k ), x * x k+1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaeWaaeaaca WGbbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaadIhadaah aaWcbeqaaiaaiQcaaaGccaaIPaGaey4bIeTaeqOXdO2aaSbaaSqaai aadIhaaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaI SaGaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaamiEam aaCaaaleqabaGaaGOkaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaa dUgacqGHRaWkcaaIXaaaaaGccaGLOaGaayzkaaGaeyizImQaaGimaa aa@51C7@ , полученным из (3.1):

                 x k+1 x * 2 ( z k x * , x k+1 x * )+ MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQaaGikaiaadQhadaah aaWcbeqaaiaadUgaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQa aaaOGaaGilaiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaa aOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiaaiMcacqGHRa Wkaaa@5497@

                            +β A k 1 φ x ( z k , u k ) A 1 ( x * ) φ x ( x * , u k ), x * x k+1 ,k1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaeq OSdi2aaeWaaeaacaWGbbWaa0baaSqaaiaadUgaaeaacqGHsislcaaI XaaaaOGaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGikai aadQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqa baGaam4AaaaakiaaiMcacqGHsislcaWGbbWaaWbaaSqabeaacqGHsi slcaaIXaaaaOGaaGikaiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaI PaGaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGikaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa am4AaaaakiaaiMcacaaISaGaamiEamaaCaaaleqabaGaaGOkaaaaki abgkHiTiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaaGc caGLOaGaayzkaaGaaGilaiaaywW7caWGRbGaeyyzImRaaGymaiaai6 caaaa@67A2@

 Здесь в правой части с учётом (5.6) вынесем A k 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaDa aaleaacaWGRbaabaGaeyOeI0IaaGymaaaaaaa@3982@ , a во втором скалярном произведении воспользуемся формулой Лагранжа. Получим

                 x k+1 x * 2 A k 1 A( z k ) z k x * , x k+1 x * + MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizImQaamyqamaaDaaaleaa caWGRbaabaGaeyOeI0IaaGymaaaakmaadeaabaaacaGLBbaacaWGbb GaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaIPaWaaeWaaeaa caWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCaaale qabaGaaGOkaaaakiaaiYcacaWG4bWaaWbaaSqabeaacaWGRbGaey4k aSIaaGymaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaaaki aawIcacaGLPaaacqGHRaWkaaa@5D9C@

                                               + β k 2 φ xx ( ξ k , u k )( z k x * ), x * x k+1 = MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaey4kaSIaeq OSdi2aaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacqGHhis0daahaaWc beqaaiaaikdaaaGccqaHgpGAdaWgaaWcbaGaamiEaiaadIhaaeqaaO GaaGikaiabe67a4naaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWa aWbaaSqabeaacaWGRbaaaOGaaGykaiaaiIcacaWG6bWaaWbaaSqabe aacaWGRbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiaa iMcacaaISaGaamiEamaaCaaaleqabaGaaGOkaaaakiabgkHiTiaadI hadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaaGccaGLOaGaayzk aaWaamGaaeaaaiaaw2faaiaai2daaaa@5826@

                                      = A k 1 A k β 2 φ xx ( ξ k , u k ) z k x * ), x * x k+1 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGypaiaadg eadaqhaaWcbaGaam4AaaqaaiabgkHiTiaaigdaaaGcdaWabaqaaaGa ay5waaGaamyqamaaBaaaleaacaWGRbaabeaakiabgkHiTiabek7aIj abgEGirpaaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG 4bGaamiEaaqabaGccaaIOaGaeqOVdG3aaWbaaSqabeaacaWGRbaaaO GaaGilaiaadwhadaahaaWcbeqaaiaadUgaaaGccaaIPaWaamGaaeaa aiaaw2faamaabmaabaGaamOEamaaCaaaleqabaGaam4Aaaaakiabgk HiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGaaGilaiaadIha daahaaWcbeqaaiaaiQcaaaGccqGHsislcaWG4bWaaWbaaSqabeaaca WGRbGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaiaaiYcaaaa@5D8B@ (5.9)

 где

                                                 k1, ξ k = z k θ( z k x * ),θ[0;1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaaigdacaaISaGaaGzbVlabe67a4naaCaaaleqabaGaam4Aaaaa kiaai2dacaWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaeqiUde NaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG4bWa aWbaaSqabeaacaaIQaaaaOGaaGykaiaaiYcacaaMf8UaeqiUdeNaey icI4SaaG4waiaaicdacaaI7aGaaGymaiaai2facaaIUaaaaa@54C2@

 Пользуемся условиями теоремы, неравенством Коши-Буняковского, и учтём, что β k =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOSdi2aaS baaSqaaiaadUgaaeqaaOGaaGypaiaaigdaaaa@3A40@  при kN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaad6eaaaa@3980@ ; тогда из (5.9) получим

                        x k+1 x * 2 1 m A( z k ) 2 φ xx ( ξ k , u k ) z k x * x k+1 x * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaeyizIm6aaSaaaeaacaaIXaaa baGaamyBaaaacqWFLicucaWGbbGaaGikaiaadQhadaahaaWcbeqaai aadUgaaaGccaaIPaGaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaa aOGaeqOXdO2aaSbaaSqaaiaadIhacaWG4baabeaakiaaiIcacqaH+o aEdaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqabaGa am4AaaaakiaaiMcacqWFLicucqWFLicucaWG6bWaaWbaaSqabeaaca WGRbaaaOGaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIi qjab=vIiqjaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaO GaeyOeI0IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqjaaiYca aaa@6D7F@

 или

                                     x k+1 x * 1 m A( z k ) 2 φ xx ( ξ k , u k ) z k x * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamyBaaaacqWFLicucaWG bbGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaeyOeI0 Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaSbaaSqaaiaa dIhacaWG4baabeaakiaaiIcacqaH+oaEdaahaaWcbeqaaiaadUgaaa GccaaISaGaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacqWFLicu cqWFLicucaWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEam aaCaaaleqabaGaaGOkaaaakiab=vIiqjaai6caaaa@63C0@  (5.10)

 Последний сомножитель в правой части (5.10) оценим с помощью нерастягивающего свойства оператора проектирования и (5.1) в варианте первого соотношения (5.3),

                 z k x * = P Q ( x k +α y k ) P Q ( x * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOEamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucaaI9aGae8 xjIaLaamiuamaaBaaaleaacaWGrbaabeaakiaaiIcacaWG4bWaaWba aSqabeaacaWGRbaaaOGaey4kaSIaeqySdeMaamyEamaaCaaaleqaba Gaam4AaaaakiaaiMcacqGHsislcaWGqbWaaSbaaSqaaiaadgfaaeqa aOGaaGikaiaadIhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGae8xjIa LaeyizImkaaa@56A5@

                                             x k x * +α y k (1+ 2 α) x k x * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImAeeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4A aaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucq GHRaWkcqaHXoqycqWFLicucaWG5bWaaWbaaSqabeaacaWGRbaaaOGa e8xjIaLaeyizImQaaGikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaS qabaGccqaHXoqycaaIPaGae8xjIaLaamiEamaaCaaaleqabaGaam4A aaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuca aIUaaaaa@5977@ (5.11)

 После подстановки оценки (5.11) из (5.10) следует

                          x k+1 x * 1 m A( z k ) 2 φ xx ( ξ k , u k )(1+ 2 α) x k x * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamyBaaaacqWFLicucaWG bbGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaeyOeI0 Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaSbaaSqaaiaa dIhacaWG4baabeaakiaaiIcacqaH+oaEdaahaaWcbeqaaiaadUgaaa GccaaISaGaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacqWFLicu caaIOaGaaGymaiabgUcaRmaakaaabaGaaGOmaaWcbeaakiabeg7aHj aaiMcacqWFLicucaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0Ia amiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqjaai6caaaa@6940@ (5.12)

 Из (5.12) следует оценка

                                                               x k+1 x * q 1k x k x * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizImQaamyCamaaBaaaleaacaaIXaGaam4AaaqabaGccqWF LicucaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaaCa aaleqabaGaaGOkaaaakiab=vIiqjaaiYcaaaa@4FD4@ (5.13)

 где q 1k = 1+ 2 α m A( z k ) 2 φ xx ( ξ k , u k )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIXaGaam4AaaqabaGccaaI9aWaaSaaaeaacaaIXaGaey4k aSYaaOaaaeaacaaIYaaaleqaaOGaeqySdegabaGaamyBaaaarqqr1n gBPrgifHhDYfgaiuaacqWFLicucaWGbbGaaGikaiaadQhadaahaaWc beqaaiaadUgaaaGccaaIPaGaeyOeI0Iaey4bIe9aaWbaaSqabeaaca aIYaaaaOGaeqOXdO2aaSbaaSqaaiaadIhacaWG4baabeaakiaaiIca cqaH+oaEdaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaale qabaGaam4AaaaakiaaiMcacqWFLicucqGHsgIRcaaIWaaaaa@5AF9@  при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ , ибо ввиду (5.4) и (5.6) при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@

                                A( z k ) 2 φ xx ( ξ k , u k )A( z k ) 2 φ xx ( x * , u k )0+. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyqaiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqabaGaaGOmaa aakiabeA8aQnaaBaaaleaacaWG4bGaamiEaaqabaGccaaIOaGaeqOV dG3aaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaaWcbeqaai aadUgaaaGccaaIPaGae8xjIaLaeyizImQae8xjIaLaamyqaiaaiIca caWG6bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirp aaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG4bGaamiE aaqabaGccaaIOaGaamiEamaaCaaaleqabaGaaGOkaaaakiaaiYcaca WG1bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiab=vIiqjabgkziUkaa icdacqGHRaWkcaaIUaaaaa@698B@  (5.14)

 Теперь преобразуем неравенство (4.5).

               u k+1 u,u u k+1 +(u w k ,u u k+1 )λ B k 1 φ u ( x k+1 , w k ),u u k+1 0, u k+1 u 2 (u w k ,u u k+1 )λ B k 1 φ u ( x k+1 , w k ),u u k+1 . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaamaabmaabaGaamyDamaaCaaaleqabaGaam4AaiabgUcaRiaaigda aaGccqGHsislcaWG1bGaaGilaiaadwhacqGHsislcaWG1bWaaWbaaS qabeaacaWGRbGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaiabgUca RiaaiIcacaWG1bGaeyOeI0Iaam4DamaaCaaaleqabaGaam4Aaaaaki aaiYcacaWG1bGaeyOeI0IaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccaaIPaGaeyOeI0Iaeq4UdW2aaeWaaeaacaWGcbWaa0 baaSqaaiaadUgaaeaacqGHsislcaaIXaaaaOGaey4bIeTaeqOXdO2a aSbaaSqaaiaadwhaaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiaadU gacqGHRaWkcaaIXaaaaOGaaGilaiaadEhadaahaaWcbeqaaiaadUga aaGccaaIPaGaaGilaiaadwhacqGHsislcaWG1bWaaWbaaSqabeaaca WGRbGaey4kaSIaaGymaaaaaOGaayjkaiaawMcaaiabgwMiZkaaicda caaISaaabaqeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bGae8xj Ia1aaWbaaSqabeaacaaIYaaaaOGaeyizImQaaGikaiaadwhacqGHsi slcaWG3bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhacqGHsisl caWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiaaiMcacq GHsislcqaH7oaBdaqadaqaaiaadkeadaqhaaWcbaGaam4Aaaqaaiab gkHiTiaaigdaaaGccqGHhis0cqaHgpGAdaWgaaWcbaGaamyDaaqaba GccaaIOaGaamiEamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGc caaISaGaam4DamaaCaaaleqabaGaam4AaaaakiaaiMcacaaISaGaam yDaiabgkHiTiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaa aaGccaGLOaGaayzkaaGaaGOlaaaaaaa@A42C@

 Положим здесь u= u * U * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyDaiaai2 dacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaeyicI4SaamyvamaaCaaa leqabaGaaGOkaaaaaaa@3CDC@  и сложим с неравенством λ B 1 ( u * ) φ u ( x k+1 , u * ), u * u k+1 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aae WaaeaacaWGcbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaaGikaiaa dwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGaey4bIeTaeqOXdO2aaS baaSqaaiaadwhaaeqaaOGaaGikaiaadIhadaahaaWcbeqaaiaadUga cqGHRaWkcaaIXaaaaOGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaa GccaaIPaGaaGilaiaadwhadaahaaWcbeqaaiaaiQcaaaGccqGHsisl caWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaaaOGaayjkai aawMcaaiabgwMiZkaaicdaaaa@551E@ , полученным из (3.2):

                          u k+1 u 2 ( w k u * , u k+1 u * )+ +λ B k 1 φ u ( x k+1 , w k ) B 1 ( u * ) φ u ( x k+1 , u * ), u k+1 u * ,k1. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadwhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDaiab=vIiqnaaCa aaleqabaGaaGOmaaaakiabgsMiJkaaiIcacaWG3bWaaWbaaSqabeaa caWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaakiaaiY cacaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgkHi TiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGaey4kaScabaGaey 4kaSIaeq4UdW2aaeWaaeaacaWGcbWaa0baaSqaaiaadUgaaeaacqGH sislcaaIXaaaaOGaey4bIeTaeqOXdO2aaSbaaSqaaiaadwhaaeqaaO GaaGikaiaadIhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGa aGilaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaeyOeI0Iaam OqamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaaiIcacaWG1bWaaWba aSqabeaacaaIQaaaaOGaaGykaiabgEGirlabeA8aQnaaBaaaleaaca WG1baabeaakiaaiIcacaWG4bWaaWbaaSqabeaacaWGRbGaey4kaSIa aGymaaaakiaaiYcacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykai aaiYcacaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaaakiaawIcacaGLPaaaca aISaGaaGjbVlaadUgacqGHLjYScaaIXaGaaGOlaaaaaaa@8891@

 С учётом (5.7), в правой части этого неравенства вынесем B k 1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaDa aaleaacaWGRbaabaGaeyOeI0IaaGymaaaaaaa@3983@  и применим во второй скобке формулу Лагранжа, затем вынесем скалярное произведение и применим неравенство Коши-Буняковского:

                 u k+1 u 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bGae8xjIa1aaWbaaSqabeaacaaIYa aaaOGaeyizImkaaa@4518@

                 B k 1 B k ( w k u * , u k+1 u * ) λ k 2 φ uu ( z k , η k )( w k u * ), u k+1 u * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam OqamaaDaaaleaacaWGRbaabaGaeyOeI0IaaGymaaaakmaadmaabaGa amOqamaaBaaaleaacaWGRbaabeaakiaaiIcacaWG3bWaaWbaaSqabe aacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaakiaa iYcacaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIaaGymaaaakiabgk HiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPaGaeyOeI0Iaeq4U dW2aaSbaaSqaaiaadUgaaeqaaOWaaeWaaeaacqGHhis0daahaaWcbe qaaiaaikdaaaGccqaHgpGAdaWgaaWcbaGaamyDaiaadwhaaeqaaOGa aGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaeq4TdG2aaW baaSqabeaacaWGRbaaaOGaaGykaiaaiIcacaWG3bWaaWbaaSqabeaa caWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaaaakiaaiM cacaaISaGaamyDamaaCaaaleqabaGaam4AaiabgUcaRiaaigdaaaGc cqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaaGccaGLOaGaayzkaa aacaGLBbGaayzxaaGaeyizImkaaa@6EDA@

                                        B k 1 ( w k u * , u k+1 u * ) B k λ k 2 φ uu ( z k , η k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam OqamaaDaaaleaacaWGRbaabaGaeyOeI0IaaGymaaaakiaaiIcacaWG 3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqaba GaaGOkaaaakiaaiYcacaWG1bWaaWbaaSqabeaacaWGRbGaey4kaSIa aGymaaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccaaIPa WaaeWaaeaacaWGcbWaaSbaaSqaaiaadUgaaeqaaOGaeyOeI0Iaeq4U dW2aaSbaaSqaaiaadUgaaeqaaOGaey4bIe9aaWbaaSqabeaacaaIYa aaaOGaeqOXdO2aaSbaaSqaaiaadwhacaWG1baabeaakiaaiIcacaWG 6bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiabeE7aOnaaCaaaleqaba Gaam4AaaaakiaaiMcaaiaawIcacaGLPaaacqGHKjYOaaa@5F48@

                                    1 p w k u * u k+1 u * B k λ k 2 φ uu ( z k , η k ), MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizIm6aaS aaaeaacaaIXaaabaGaamiCaaaarqqr1ngBPrgifHhDYfgaiuaacqWF LicucaWG3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCa aaleqabaGaaGOkaaaakiab=vIiqjabgwSixlab=vIiqjaadwhadaah aaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCa aaleqabaGaaGOkaaaakiab=vIiqjabgwSixlab=vIiqjaadkeadaWg aaWcbaGaam4AaaqabaGccqGHsislcqaH7oaBdaWgaaWcbaGaam4Aaa qabaGccqGHhis0daahaaWcbeqaaiaaikdaaaGccqaHgpGAdaWgaaWc baGaamyDaiaadwhaaeqaaOGaaGikaiaadQhadaahaaWcbeqaaiaadU gaaaGccaaISaGaeq4TdG2aaWbaaSqabeaacaWGRbaaaOGaaGykaiab =vIiqjaaiYcaaaa@68A7@

                                                k1, η k = w k θ( w k u * ),θ[0;1]. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaaigdacaaISaGaaGzbVlabeE7aOnaaCaaaleqabaGaam4Aaaaa kiaai2dacaWG3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaeqiUde NaaGikaiaadEhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWa aWbaaSqabeaacaaIQaaaaOGaaGykaiaaiYcacaaMf8UaeqiUdeNaey icI4SaaG4waiaaicdacaaI7aGaaGymaiaai2facaaIUaaaaa@54A2@

Отсюда следует,

                                      u k+1 u * 1 p w k u * B k λ 2 φ uu ( z k , η k ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamiCaaaacqWFLicucaWG 3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgwSixlab=vIiqjaadkeadaWgaaWcbaGa am4AaaqabaGccqGHsislcqaH7oaBcqGHhis0daahaaWcbeqaaiaaik daaaGccqaHgpGAdaWgaaWcbaGaamyDaiaadwhaaeqaaOGaaGikaiaa dQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaeq4TdG2aaWbaaSqabe aacaWGRbaaaOGaaGykaiab=vIiqjaai6caaaa@6539@   (5.15)

 Сомножитель в правой части (5.15) оценим с помощью нерастягивающего свойства оператора проектирования и (5.1) в варианте первого из неравенств (5.3),

                 w k u * = P U (u+α v k ) P U ( u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaam4DamaaCaaaleqabaGaam4Aaaaakiab gkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucaaI9aGae8 xjIaLaamiuamaaBaaaleaacaWGvbaabeaakiaaiIcacaWG1bGaey4k aSIaeqySdeMaamODamaaCaaaleqabaGaam4AaaaakiaaiMcacqGHsi slcaWGqbWaaSbaaSqaaiaadwfaaeqaaOGaaGikaiaadwhadaahaaWc beqaaiaaiQcaaaGccaaIPaGae8xjIaLaeyizImkaaa@5577@

                                              u k u * +α v k (1+ 2 α) u k u * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImAeeu uDJXwAKbsr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4A aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucq GHRaWkcqaHXoqycqWFLicucaWG2bWaaWbaaSqabeaacaWGRbaaaOGa e8xjIaLaeyizImQaaGikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaS qabaGccqaHXoqycaaIPaGae8xjIaLaamyDamaaCaaaleqabaGaam4A aaaakiabgkHiTiaadwhadaahaaWcbeqaaiaaiQcaaaGccqWFLicuca aIUaaaaa@5968@ (5.16)

 Подставим оценку (5.16) в (5.15) и учтём, что λ k =1 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4UdW2aaS baaSqaaiaadUgaaeqaaOGaaGypaiaaigdaaaa@3A53@  при kN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgw MiZkaad6eaaaa@3980@ ; тогда из (5.15) получим

                               u k+1 u * 1 p (1+ 2 α) u k u * B k 2 φ uu ( z k , η k ). MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamiCaaaacaaIOaGaaGym aiabgUcaRmaakaaabaGaaGOmaaWcbeaakiabeg7aHjaaiMcacqWFLi cucaWG1bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaa leqabaGaaGOkaaaakiab=vIiqjab=vIiqjaadkeadaWgaaWcbaGaam 4AaaqabaGccqGHsislcqGHhis0daahaaWcbeqaaiaaikdaaaGccqaH gpGAdaWgaaWcbaGaamyDaiaadwhaaeqaaOGaaGikaiaadQhadaahaa WcbeqaaiaadUgaaaGccaaISaGaeq4TdG2aaWbaaSqabeaacaWGRbaa aOGaaGykaiab=vIiqjaai6caaaa@66BB@ (5.17)

 Из (5.17) следует оценка

                                              u k+1 u * q 2k u k u * , q 2k 0,k, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizImQaamyCamaaBaaaleaacaaIYaGaam4AaaqabaGccqWF LicucaWG1bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCa aaleqabaGaaGOkaaaakiab=vIiqjaaiYcacaWGXbWaaSbaaSqaaiaa ikdacaWGRbaabeaakiabgkziUkaaicdacaaISaGaaGjbVlaadUgacq GHsgIRcqGHEisPcaaISaaaaa@5C8F@ (5.18)

 где q 2k = 1+ 2 α p B k 2 φ uu ( z k , η k )0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaaIYaGaam4AaaqabaGccaaI9aWaaSaaaeaacaaIXaGaey4k aSYaaOaaaeaacaaIYaaaleqaaOGaeqySdegabaGaamiCaaaarqqr1n gBPrgifHhDYfgaiuaacqWFLicucaWGcbWaaSbaaSqaaiaadUgaaeqa aOGaeyOeI0Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaS baaSqaaiaadwhacaWG1baabeaakiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGilaiabeE7aOnaaCaaaleqabaGaam4AaaaakiaaiM cacqWFLicucqGHsgIRcaaIWaaaaa@5881@  при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ , ибо ввиду (5.5) и (5.7) при k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@  

                                        B k 2 φ uu ( z k , η k ) B k 2 φ uu ( z k , u * )0. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOqamaaBaaaleaacaWGRbaabeaakiab gkHiTiabgEGirpaaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaale aacaWG1bGaamyDaaqabaGccaaIOaGaamOEamaaCaaaleqabaGaam4A aaaakiaaiYcacqaH3oaAdaahaaWcbeqaaiaadUgaaaGccaaIPaGae8 xjIaLaeyizImQae8xjIaLaamOqamaaBaaaleaacaWGRbaabeaakiab gkHiTiabgEGirpaaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaale aacaWG1bGaamyDaaqabaGccaaIOaGaamOEamaaCaaaleqabaGaam4A aaaakiaaiYcacaWG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiab=v IiqjabgkziUkaaicdacaaIUaaaaa@63C5@  (5.19)

 Сложив неравенства (5.13) и (5.18), получим доказываемую оценку

      x k+1 x * + u k+1 u * q 1k x k x * + q 2k u k u * , q 1k 0, q 2k 0,k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabeqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgUcaRiab=vIiqjaadwhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgsMiJkaadghadaWgaaWcbaGaaGymaiaa dUgaaeqaaOGae8xjIaLaamiEamaaCaaaleqabaGaam4Aaaaakiabgk HiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHRaWkcaWG XbWaaSbaaSqaaiaaikdacaWGRbaabeaakiab=vIiqjaadwhadaahaa WcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaa aOGae8xjIaLaaGilaiaaysW7caWGXbWaaSbaaSqaaiaaigdacaWGRb aabeaakiabgkziUkaaicdacaaISaGaaGjbVlaadghadaWgaaWcbaGa aGOmaiaadUgaaeqaaOGaeyOKH4QaaGimaiaaiYcacaaMe8Uaam4Aai abgkziUkabg6HiLkaai6caaaaaaa@7A84@

Доказательство завершено.

Замечание 5.2. Заметим следующее.

1) Если принять q k =max{ q 1k ; q 2k } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGRbaabeaakiaai2daciGGTbGaaiyyaiaacIhacaaI7bGa amyCamaaBaaaleaacaaIXaGaam4AaaqabaGccaaI7aGaaGjcVlaadg hadaWgaaWcbaGaaGOmaiaadUgaaeqaaOGaaGyFaaaa@45BF@ , q k 0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaBa aaleaacaWGRbaabeaakiabgkziUkaaicdaaaa@3ABA@ , k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4Aaiabgk ziUkabg6HiLcaa@3A45@ , то вместо (5.8) можно записать

                                  x k+1 x * + u k+1 u * q k x k x * + u k u * , q k 0,k. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabiqaaa qaaebbfv3ySLgzGueE0jxyaGqbaiab=vIiqjaadIhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamiEamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgUcaRiab=vIiqjaadwhadaahaaWcbeqa aiaadUgacqGHRaWkcaaIXaaaaOGaeyOeI0IaamyDamaaCaaaleqaba GaaGOkaaaakiab=vIiqjabgsMiJkaadghadaWgaaWcbaGaam4Aaaqa baGcdaqadaqaaiab=vIiqjaadIhadaahaaWcbeqaaiaadUgaaaGccq GHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIaLaey4kaSIa e8xjIaLaamyDamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadwhada ahaaWcbeqaaiaaiQcaaaGccqWFLicuaiaawIcacaGLPaaacaaISaaa baGaaGjbVlaadghadaWgaaWcbaGaam4AaaqabaGccqGHsgIRcaaIWa GaaGilaiaaysW7caWGRbGaeyOKH4QaeyOhIuQaaGOlaaaaaaa@6FFF@

 2) Если вместо (5.13) и (5.18) сложим квадраты неравенств (5.13) и (5.18), то придём к неравенству

                            x k+1 x * 2 + u k+1 u * 2 q 1k 2 x k x * 2 + q 2k 2 u k u * 2 , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIa1aaWbaaSqabeaacaaIYaaaaOGaey4kaSIae8xjIaLaamyDamaa CaaaleqabaGaam4AaiabgUcaRiaaigdaaaGccqGHsislcaWG1bWaaW baaSqabeaacaaIQaaaaOGae8xjIa1aaWbaaSqabeaacaaIYaaaaOGa eyizImQaamyCamaaDaaaleaacaaIXaGaam4AaaqaaiaaikdaaaGccq WFLicucaWG4bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamiEamaa CaaaleqabaGaaGOkaaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaaki abgUcaRiaadghadaqhaaWcbaGaaGOmaiaadUgaaeaacaaIYaaaaOGa e8xjIaLaamyDamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadwhada ahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGc caaISaaaaa@69A9@

 затем, при q k 2 =max{ q 1k 2 ; q 2k 2 } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyCamaaDa aaleaacaWGRbaabaGaaGOmaaaakiaai2daciGGTbGaaiyyaiaacIha caaI7bGaamyCamaaDaaaleaacaaIXaGaam4AaaqaaiaaikdaaaGcca aI7aGaaGjcVlaadghadaqhaaWcbaGaaGOmaiaadUgaaeaacaaIYaaa aOGaaGyFaaaa@47F6@ , получим вместо (5.8)

                                        ρ 2 ( x k+1 , u k+1 ) q k 2 ρ 2 ( x k , u k ), q k 0+,k, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaW baaSqabeaacaaIYaaaaOGaaGikaiaadIhadaahaaWcbeqaaiaadUga cqGHRaWkcaaIXaaaaOGaaGilaiaadwhadaahaaWcbeqaaiaadUgacq GHRaWkcaaIXaaaaOGaaGykaiabgsMiJkaadghadaqhaaWcbaGaam4A aaqaaiaaikdaaaGccqaHbpGCdaahaaWcbeqaaiaaikdaaaGccaaIOa GaamiEamaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWbaaSqa beaacaWGRbaaaOGaaGykaiaaiYcacaaMf8UaamyCamaaBaaaleaaca WGRbaabeaakiabgkziUkaaicdacqGHRaWkcaaISaGaaGjbVlaadUga cqGHsgIRcqGHEisPcaaISaaaaa@5F15@

 где обозначено ρ 2 ( x k , u k )= x k x * 2 + u k u * 2 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqyWdi3aaW baaSqabeaacaaIYaaaaOGaaGikaiaadIhadaahaaWcbeqaaiaadUga aaGccaaISaGaamyDamaaCaaaleqabaGaam4AaaaakiaaiMcacaaI9a qeeuuDJXwAKbsr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGa am4AaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQcaaaGccqWFLi cudaahaaWcbeqaaiaaikdaaaGccqGHRaWkcqWFLicucaWG1bWaaWba aSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOkaa aakiab=vIiqnaaCaaaleqabaGaaGOmaaaaaaa@5587@ .

6.      Оценка квадратичной скорости сходимости ПОДЭМКСМ

При дополнительном условии относительно операторов A k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyqamaaBa aaleaacaWGRbaabeaaaaa@37D9@ , B k MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOqamaaBa aaleaacaWGRbaabeaaaaa@37DA@  получим оценку квадратичной сходимости ПОДЭМКCМ (2.1). Воспользуемся обобщением неравенства из работы [15]. Предположим, что константы c 1 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIXaaabeaakiaai6dacaaIWaaaaa@3952@ , c 2 >0 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIYaaabeaakiaai6dacaaIWaaaaa@3953@  и число N MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOtaaaa@36CA@  таковы, что kN MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyiaIiIaaG jbVlaadUgacqGHLjYScaWGobaaaa@3BDD@  имеют место неравенства

                                     A( z k ) 2 φ xx ( x * , u k ) c 1 z k x * , u k E m , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyqaiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqabaGaaGOmaa aakiabeA8aQnaaBaaaleaacaWG4bGaamiEaaqabaGccaaIOaGaamiE amaaCaaaleqabaGaaGOkaaaakiaaiYcacaWG1bWaaWbaaSqabeaaca WGRbaaaOGaaGykaiab=vIiqjabgsMiJkaadogadaWgaaWcbaGaaGym aaqabaGccqWFLicucaWG6bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0 IaamiEamaaCaaaleqabaGaaGOkaaaakiab=vIiqjaaiYcacaaMf8Ua eyiaIiIaaGjbVlaadwhadaahaaWcbeqaaiaadUgaaaGccqGHiiIZca WGfbWaaWbaaSqabeaacaWGTbaaaOGaaGilaaaa@6443@ (6.1)

                                  B( w k ) 2 φ uu ( x k , u * ) c 2 w k u * ), x k E n . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOqaiaaiIcacaWG3bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqabaGaaGOmaa aakiabeA8aQnaaBaaaleaacaWG1bGaamyDaaqabaGccaaIOaGaamiE amaaCaaaleqabaGaam4AaaaakiaaiYcacaWG1bWaaWbaaSqabeaaca aIQaaaaOGaaGykaiab=vIiqjabgsMiJkaadogadaWgaaWcbaGaaGOm aaqabaGccqWFLicucaWG3bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0 IaamyDamaaCaaaleqabaGaaGOkaaaakiaaiMcacqWFLicucaaISaGa aGzbVlabgcGiIiaaysW7caWG4bWaaWbaaSqabeaacaWGRbaaaOGaey icI4SaamyramaaCaaaleqabaGaamOBaaaakiaai6caaaa@64EF@ (6.2)

 Теорема 6.1. Пусть выполнены все условия теорем 4.1 и 5.1, неравенства (6.1), (6.2). Тогда последовательность { x k , u k } MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqabaGa am4Aaaaakiaai2haaaa@3CFE@  ПОДЭМКСМ (2.1) MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@ (2.4), (4.1) с квадратичной скоростью сходится к решению { x * , u * } W * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaG4EaiaadI hadaahaaWcbeqaaiaaiQcaaaGccaaISaGaamyDamaaCaaaleqabaGa aGOkaaaakiaai2hacqGHiiIZcaWGxbWaaSbaaSqaaiaaiQcaaeqaaa aa@3FC6@  задачи (1.1), причем

                                          x k+1 x * + u k+1 u * c ρ 2 ( x k , u k ),kN, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaey4kaSIae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizImQaam4yaiabeg8aYnaaCaaaleqabaGaaGOmaaaakiaa iIcacaWG4bWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaa WcbeqaaiaadUgaaaGccaaIPaGaaGilaiaaysW7caWGRbGaeyyzImRa amOtaiaaiYcaaaa@5F3D@ (6.3)

 где c=(1+ 2 α ) 2 c 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dacaaIOaGaaGymaiabgUcaRmaakaaabaGaaGOmaaWcbeaakiabeg7a HjaaiMcadaahaaWcbeqaaiaaikdaaaGccaWGJbWaaSbaaSqaaiaaio daaeqaaaaa@3FEC@ , c 3 =max{ c 1 /m; c 2 /p} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIZaaabeaakiaai2daciGGTbGaaiyyaiaacIhacaaI7bGa am4yamaaBaaaleaacaaIXaaabeaakiaai+cacaWGTbGaaG4oaiaado gadaWgaaWcbaGaaGOmaaqabaGccaaIVaGaamiCaiaai2haaaa@454A@ .

 Доказательство. Заметим, что при условиях теоремы 6.1 все выкладки теорем 4.1, и 5.1, а также неравенства (5.11), (5.12) и (5.16), (5.17) справедливы. Здесь сначала воспользуемся в (5.12) неравенствами из (5.11), (5.14) и (6.1),

                 A( z k ) 2 φ xx ( ξ k , u k )A( z k ) 2 φ xx ( x * , u k ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyqaiaaiIcacaWG6bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqabaGaaGOmaa aakiabeA8aQnaaBaaaleaacaWG4bGaamiEaaqabaGccaaIOaGaeqOV dG3aaWbaaSqabeaacaWGRbaaaOGaaGilaiaadwhadaahaaWcbeqaai aadUgaaaGccaaIPaGae8xjIaLaeyizImQae8xjIaLaamyqaiaaiIca caWG6bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirp aaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG4bGaamiE aaqabaGccaaIOaGaamiEamaaCaaaleqabaGaaGOkaaaakiaaiYcaca WG1bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiab=vIiqjabgsMiJcaa @66FF@

                                                  c 1 z k x * c 1 (1+ 2 α) x k x * . MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIXaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadQhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG4bWaaW baaSqabeaacaaIQaaaaOGae8xjIaLaeyizImQaam4yamaaBaaaleaa caaIXaaabeaakiaaiIcacaaIXaGaey4kaSYaaOaaaeaacaaIYaaale qaaOGaeqySdeMaaGykaiab=vIiqjaadIhadaahaaWcbeqaaiaadUga aaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8xjIaLaaG Olaaaa@564D@

Подставив эту оценку в (5.12), получим

                 x k+1 x * 1 m A( z k ) 2 φ xx ( x * , u k )(1+ 2 α) x k x * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamyBaaaacqWFLicucaWG bbGaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaIPaGaeyOeI0 Iaey4bIe9aaWbaaSqabeaacaaIYaaaaOGaeqOXdO2aaSbaaSqaaiaa dIhacaWG4baabeaakiaaiIcacaWG4bWaaWbaaSqabeaacaaIQaaaaO GaaGilaiaadwhadaahaaWcbeqaaiaadUgaaaGccaaIPaGae8xjIaLa aGikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaSqabaGccqaHXoqyca aIPaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaa dIhadaahaaWcbeqaaiaaiQcaaaGccqWFLicucqGHKjYOaaa@693B@

                                                  c 1 1 m (1+ 2 α) 2 x k x * 2 ,kN. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIXaaabeaakmaalaaabaGaaGymaaqaaiaad2ga aaGaaGikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaSqabaGccqaHXo qycaaIPaWaaWbaaSqabeaacaaIYaaaaebbfv3ySLgzGueE0jxyaGqb aOGae8xjIaLaamiEamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadI hadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccaaISaGaaGzbVlaadUgacqGHLjYScaWGobGaaGOlaaaa@54FC@ (6.4)

 Воспользуемся неравенствами из (5.16), (5.19) и (6.2),

                 B( w k ) 2 φ uu ( z k , ξ k )B( w k ) 2 φ uu ( z k , u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamOqaiaaiIcacaWG3bWaaWbaaSqabeaa caWGRbaaaOGaaGykaiabgkHiTiabgEGirpaaCaaaleqabaGaaGOmaa aakiabeA8aQnaaBaaaleaacaWG1bGaamyDaaqabaGccaaIOaGaamOE amaaCaaaleqabaGaam4AaaaakiaaiYcacqaH+oaEdaahaaWcbeqaai aadUgaaaGccaaIPaGae8xjIaLaeyizImQae8xjIaLaamOqaiaaiIca caWG3bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiabgkHiTiabgEGirp aaCaaaleqabaGaaGOmaaaakiabeA8aQnaaBaaaleaacaWG1bGaamyD aaqabaGccaaIOaGaamOEamaaCaaaleqabaGaam4AaaaakiaaiYcaca WG1bWaaWbaaSqabeaacaaIQaaaaOGaaGykaiab=vIiqjabgsMiJcaa @66F6@

                                                 c 2 w k u * c 2 (1+ 2 α) u k u * , MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIYaaabeaarqqr1ngBPrgifHhDYfgaiuaakiab =vIiqjaadEhadaahaaWcbeqaaiaadUgaaaGccqGHsislcaWG1bWaaW baaSqabeaacaaIQaaaaOGae8xjIaLaeyizImQaam4yamaaBaaaleaa caaIYaaabeaakiaaiIcacaaIXaGaey4kaSYaaOaaaeaacaaIYaaale qaaOGaeqySdeMaaGykaiab=vIiqjaadwhadaahaaWcbeqaaiaadUga aaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8xjIaLaaG ilaaaa@5641@

 и воспользуемся полученной оценкой в (5.17), тогда из (5.17) имеем

                 u k+1 u * 1 p (1+ 2 α) u k u * B( w k ) 2 φ uu ( z k , u * ) MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizIm6aaSaaaeaacaaIXaaabaGaamiCaaaacaaIOaGaaGym aiabgUcaRmaakaaabaGaaGOmaaWcbeaakiabeg7aHjaaiMcacqWFLi cucaWG1bWaaWbaaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaa leqabaGaaGOkaaaakiab=vIiqjab=vIiqjaadkeacaaIOaGaam4Dam aaCaaaleqabaGaam4AaaaakiaaiMcacqGHsislcqGHhis0daahaaWc beqaaiaaikdaaaGccqaHgpGAdaWgaaWcbaGaamyDaiaadwhaaeqaaO GaaGikaiaadQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaa CaaaleqabaGaaGOkaaaakiaaiMcacqWFLicucqGHKjYOaaa@692C@

                                                  c 2 1 p (1+ 2 α) 2 u k u * 2 ,kN. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaam 4yamaaBaaaleaacaaIYaaabeaakmaalaaabaGaaGymaaqaaiaadcha aaGaaGikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaSqabaGccqaHXo qycaaIPaWaaWbaaSqabeaacaaIYaaaaebbfv3ySLgzGueE0jxyaGqb aOGae8xjIaLaamyDamaaCaaaleqabaGaam4AaaaakiabgkHiTiaadw hadaahaaWcbeqaaiaaiQcaaaGccqWFLicudaahaaWcbeqaaiaaikda aaGccaaISaGaaGzbVlaadUgacqGHLjYScaWGobGaaGOlaaaa@54FA@

 Сложив это неравенство с (6.4), получим

                 x k+1 x * + u k+1 u * MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqeeuuDJXwAKb sr4rNCHbacfaGae8xjIaLaamiEamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG4bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaey4kaSIae8xjIaLaamyDamaaCaaaleqabaGaam4AaiabgUca RiaaigdaaaGccqGHsislcaWG1bWaaWbaaSqabeaacaaIQaaaaOGae8 xjIaLaeyizImkaaa@4EC0@

                            (1+ 2 α) 2 c 1 x k x * 2 /m+ c 2 u k u * 2 /p ,kN. MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeyizImQaaG ikaiaaigdacqGHRaWkdaGcaaqaaiaaikdaaSqabaGccqaHXoqycaaI PaWaaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacaWGJbWaaSbaaSqaai aaigdaaeqaaebbfv3ySLgzGueE0jxyaGqbaOGae8xjIaLaamiEamaa CaaaleqabaGaam4AaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaiQ caaaGccqWFLicudaahaaWcbeqaaiaaikdaaaGccaaIVaGaamyBaiab gUcaRiaadogadaWgaaWcbaGaaGOmaaqabaGccqWFLicucaWG1bWaaW baaSqabeaacaWGRbaaaOGaeyOeI0IaamyDamaaCaaaleqabaGaaGOk aaaakiab=vIiqnaaCaaaleqabaGaaGOmaaaakiaai+cacaWGWbaaca GLOaGaayzkaaGaaGilaiaaywW7caWGRbGaeyyzImRaamOtaiaai6ca aaa@62FB@ (6.5)

 Здесь примем c 3 =max{ c 1 /m; c 2 /p} MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yamaaBa aaleaacaaIZaaabeaakiaai2daciGGTbGaaiyyaiaacIhacaaI7bGa am4yamaaBaaaleaacaaIXaaabeaakiaai+cacaWGTbGaaG4oaiaado gadaWgaaWcbaGaaGOmaaqabaGccaaIVaGaamiCaiaai2haaaa@454A@ ; c=(1+ 2 α ) 2 c 3 MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4yaiaai2 dacaaIOaGaaGymaiabgUcaRmaakaaabaGaaGOmaaWcbeaakiabeg7a HjaaiMcadaahaaWcbeqaaiaaikdaaaGccaWGJbWaaSbaaSqaaiaaio daaeqaaaaa@3FEC@ . Тогда из (6.5) следует (6.3).

Доказательство завершено

Замечание 6.1. Можно доказать аналоги теорем 4.1 MathType@MTEF@5@5@+= feaahGart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqefmuySLMyYL gaiuaajugybabaaaaaaaaapeGaa83eGaaa@3A74@  6.1 для обоснования модификации ПОДЭМКCM (2.1), часто успешной для численных реализаций:

                       z k = P Q x k + α k y k /( y k ) , x k+1 = P Q z k β k A k 1 φ x ( z k , u k )/( φ x ( z k , u k )) , w k = P U u k + α k v k /( v k ) , u k+1 = P U w k + λ k B k 1 φ u ( x k+1 , w k )/( φ u ( x k+1 , w k )) ,k1, MathType@MTEF@5@5@+= feaahGart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaqbaeqabqqaaa aabaGaamOEamaaCaaaleqabaGaam4Aaaaakiaai2dacaWGqbWaaSba aSqaaiaadgfaaeqaaOWaamWaaeaacaWG4bWaaWbaaSqabeaacaWGRb aaaOGaey4kaSIaeqySde2aaSbaaSqaaiaadUgaaeqaaOGaamyEamaa CaaaleqabaGaam4Aaaaakiaai+cacaaIOaqeeuuDJXwAKbsr4rNCHb acfaGae8xjIaLaamyEamaaCaaaleqabaGaam4Aaaaakiab=vIiqjaa iMcaaiaawUfacaGLDbaacaaISaaabaGaamiEamaaCaaaleqabaGaam 4AaiabgUcaRiaaigdaaaGccaaI9aGaamiuamaaBaaaleaacaWGrbaa beaakmaadmaabaGaamOEamaaCaaaleqabaGaam4AaaaakiabgkHiTi abek7aInaaBaaaleaacaWGRbaabeaakiaadgeadaqhaaWcbaGaam4A aaqaaiabgkHiTiaaigdaaaGccqGHhis0cqaHgpGAdaWgaaWcbaGaam iEaaqabaGccaaIOaGaamOEamaaCaaaleqabaGaam4AaaaakiaaiYca caWG1bWaaWbaaSqabeaacaWGRbaaaOGaaGykaiaai+cacaaIOaGae8 xjIaLaey4bIeTaeqOXdO2aaSbaaSqaaiaadIhaaeqaaOGaaGikaiaa dQhadaahaaWcbeqaaiaadUgaaaGccaaISaGaamyDamaaCaaaleqaba Gaam4AaaaakiaaiMcacqWFLicucaaIPaaacaGLBbGaayzxaaGaaGil aaqaaiaadEhadaahaaWcbeqaaiaadUgaaaGccaaI9aGaamiuamaaBa aaleaacaWGvbaabeaakmaadmaabaGaamyDamaaCaaaleqabaGaam4A aaaakiabgUcaRiabeg7aHnaaBaaaleaacaWGRbaabeaakiaadAhada ahaaWcbeqaaiaadUgaaaGccaaIVaGaaGikaiab=vIiqjaadAhadaah aaWcbeqaaiaadUgaaaGccqWFLicucaaIPaaacaGLBbGaayzxaaGaaG ilaaqaaiaadwhadaahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGa aGypaiaadcfadaWgaaWcbaGaamyvaaqabaGcdaWadaqaaiaadEhada ahaaWcbeqaaiaadUgaaaGccqGHRaWkcqaH7oaBdaWgaaWcbaGaam4A aaqabaGccaWGcbWaa0baaSqaaiaadUgaaeaacqGHsislcaaIXaaaaO Gaey4bIeTaeqOXdO2aaSbaaSqaaiaadwhaaeqaaOGaaGikaiaadIha daahaaWcbeqaaiaadUgacqGHRaWkcaaIXaaaaOGaaGilaiaadEhada ahaaWcbeqaaiaadUgaaaGccaaIPaGaaG4laiaaiIcacqWFLicucqGH his0cqaHgpGAdaWgaaWcbaGaamyDaaqabaGccaaIOaGaamiEamaaCa aaleqabaGaam4AaiabgUcaRiaaigdaaaGccaaISaGaam4DamaaCaaa leqabaGaam4AaaaakiaaiMcacqWFLicucaaIPaaacaGLBbGaayzxaa GaaGilaiaaywW7caWGRbGaeyyzImRaaGymaiaaiYcaaaaaaa@C85A@

 где используются те же обозначения, что и в (2.1).

7.      Заключение

В данной статье доказаны: сходимость ПОДЭМКСМ (2.1) для решения седловых задач с выпукло-вогнутыми седловыми функциями с Липшицевыми частными градиентами и сверхлинейная, и квадратичная, скорости сходимости метода в случае дважды непрерывно дифференцируемых, а следовательно, сильно выпукло-вогнутых седловых функций при соответствующих дополнительных условиях. ПОДЭМКСМ (2.1) обладает преимуществами, присущими двум классам методов решения седловых и равновесных задач: обобщённым двухточечным экстраградиентным и квазиньютоновским. Такие методы представляют значительный научный и прикладной интерес. Методы с квадратичной скоростью сходимости для решения седловых задач являются большой редкостью, они ценны для науки и приложений, поэтому их разработка и исследование актуальны.

×

Об авторах

Валериан Григорьевич Малинов

Автор, ответственный за переписку.
Email: vgmalinov@mail.ru
ORCID iD: 0009-0007-1758-9770

канд. физ.-мат. наук, независимый исследователь

Россия

Список литературы

  1. Демьянов В.Ф., Певный А.Б. Численные методы разыскания седловых точек// Журнал вычислительной математики и математической физики. 1972. Т.12. № 5. С. 1099–1127.
  2. Корпелевич Г.М. Экстраполяционные градиентные методы и их связь с модифицированными функциями Лагранжа // Экономика и математические методы. 1983. Т. 19. Вып. 4. С. 694–703.
  3. Антипин А.С. Градиентный и экстраградиентный подходы в билинейном и равновесном программировании. М.: Изд-во ВЦ РАН, 2002. 131 c.
  4. Антипин А.С., Васильев Ф.П. О непрерывном методе минимизации в пространствах с переменной метрикой // Известия вузов. Математика. 1995. № 12 (403). С. 3–9.
  5. Амочкина Т.В. Непрерывный метод проекции градиента второго порядка с переменной метрикой// ЖВМ и МФ. 1997. Т. 37, № 10. С. 1174–1182.
  6. Малинов В.Г. О проекционном квазиньютоновском обобщённом двухшаговом методе минимизации и оптимизации траектории летательного аппарата // Журнал Средневолжского математического общества. 2010. Том 12, № 4. С. 37–48.
  7. Малинов В.Г. Проекционный обобщенный двухточечный экстраградиентный квазиньютоновский метод решения седловых и других задач // Журнал вычислительной математики и математической физики. 2020. Т. 60, № 2. С. 221–233.
  8. Malinov V.G. On the Extragradient projection method for saddle-point problems // VI Moscow International Conference on Operation Research (ORM2010). Moscow. October 19-23, 2010. Proceedings. pp. 207 – 209.
  9. Малинов В.Г. Версии двух проекционных двухшаговых методов для решения седловых и других задач // VII Московская международная конференция по исследованию операций (ORM2013). Москва, 15-19 октября 2013 г. Труды. Том II. Москва: ВЦ РАН, 2013. С. 25 – 27.
  10. Малинов В.Г. О версиях двух проекционных обобщённых двухшаговых экстраградиентных методов для равновесных и других задач // Прикладная математика и механика. Сборник научных трудов. Ульяновск. УлГТУ, 2014. С. 161 – 178.
  11. Малинов В.Г. Непрерывный проекционный обобщенный экстраградиентный квазиньютоновский метод второго порядка для решения седловых задач // Журнал вычислительной математики и математической физики. 2022. Т. 62, № 5. С. 777–789.
  12. Антипин А.С. Методы нелинейного программирования, основанные на прямой и двойственной модификации функции Лагранжа. М.: ВНИИ системных исследований, 1979. 74 с.
  13. Васильев Ф.П. Численные методы решения экстремальных задач. М.: Наука, 1988. 552 c.
  14. Карманов В.Г. Математическое программирование. М.: Наука, 1975. 272 c.
  15. Conn A.R., Gould N.I.M., Toint Ph.L. Convergence of quasi-Newton matrices generated by the symmetric rank one update // Mathematical Programming. 1991. Vol. 50, no. 2. pp. 177–195.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Малинов В.Г., 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Мы используем файлы cookies, сервис веб-аналитики Яндекс.Метрика для улучшения работы сайта и удобства его использования. Продолжая пользоваться сайтом, вы подтверждаете, что были об этом проинформированы и согласны с нашими правилами обработки персональных данных.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).