Spherical flow diagram with finite hyperbolic chain-recurrent set

Cover Page

Cite item

Full Text

Abstract

n this paper, authors examine flows with a finite hyperbolic chain-recurrent set without heteroclinic intersections on arbitrary closed n-manifolds. For such flows, the existence of a dual attractor and a repeller is proved. These points are separated by a (n-1)-dimensional sphere, which is secant for wandering trajectories in a complement to attractor and repeller. The study of the flow dynamics makes it possible to obtain a topological invariant, called a spherical flow scheme, consisting of multi-dimensional spheres that are the intersections of a secant sphere with invariant saddle manifolds. It is worth known that for some classes of flows spherical scheme is complete invariant. Thus, it follows from G. Fleitas results that for polar flows (with a single sink and a single source) on the surface, it is the spherical scheme that is complete equivalence invariant. 

About the authors

Vladislav D. Galkin

National Research University Higher School of Economics

Email: opochinka@hse.ru
ORCID iD: 0000-0001-6796-9228

Research Assistant of International laboratory of Dynamical Systems and Applications

Russian Federation, 25/12 Bolshaya Pecherskaya St., Nizhny Novgorod 603150, Russia

Olga V. Pochinka

National Research University Higher School of Economics

Author for correspondence.
Email: opochinka@hse.ru
ORCID iD: 0000-0002-6587-5305

Dr.Sci. (Phys.-Math.), Professor of the Department of Fundamental Mathematics

Russian Federation, 25/12 Bolshaya Pecherskaya St., Nizhny Novgorod 603150, Russia

References

  1. G. Fleitas, “Classification of gradient-like flows on dimensions two and three”, Sociedade Brasileira de Matemática - Bulletin/Brazilian Mathematical Society, 19:6 (1975), 155-187.
  2. C. Kosniowski, A first course in algebraic topology, Cambridge University Press, Cambridge, 1980 DOI: https://doi.org/10.1017/CBO9780511569296.
  3. T. V. Medvedev, O. V. Pochinka, S. Kh. Zinina, “On existence of Morse energy function for topological flows”, Advances in Mathematics, 378 (2021), 15 p. DOI:https://doi.org/10.1016/j.aim.2020.107518
  4. O. V. Pochinka, S. Kh. Zinina, “Construction of the Morse-Bott Energy Function for Regular Topological Flows”, Regular and Chaotic Dynamics, 26:4 (2021), 350–369. DOI: https://doi.org/10.1134/S1560354721040031
  5. V. Z. Grines, V. S. Medvedev, O. V. Pochinka, E. V. Zhuzhoma, “Global attractor and repeller of Morse-Smale diffeomorphisms”, Trudy MIAN, 271 (2010), 111–133.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Galkin V.D., Pochinka O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

We use cookies and Yandex.Metrica to improve the Site and for good user experience. By continuing to use this Site, you confirm that you have been informed about this and agree to our personal data processing rules.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).