Quantitative large-scale study of school student’s academic performance peculiarities during distance education caused by COVID-19

Cover Page

Cite item

Full Text

Abstract

The paper presents the large-scale analysis results of the distance learning impact caused by COVID-19 and its influence on school student's academic performance. This multidisciplinary study is based on the large amount of the raw data containing school student’s grades from 2015 till 2021 academic years taken from “Electronic education in Tatarstan Republic” system. The analysis is based on application of BigData and mathematical statistics methods, realized by using Python programming language. Dask framework for parallel cluster-based computation, Pandas library for data manipulation and large-scale analysis data is used. One of the main priorities of this paper is to identify the impact of different educational system’s factors on school student’s academic performance. For that purpose, the quantile regression method was used. This method is widely used for processing a large-scale data of various experiments in modern data science. Quantile regression models are designed to determine conditional quantile functions. Therefore, this method is especially suitable to exam conditional effects at various locations of the outcome distribution: e.g., lower and upper tails. The study-related conditional factors include such factors as student’s marks from previous academic years, types of lessons in which grades were obtained, and various teacher’s parameters such as age, gender and qualification category.

About the authors

V. A. Yunusov

Kazan Federal University

Email: valentin.yunusov@gmail.com
Russian Federation, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, 420008

A. F. Gilemzyanov

Kazan Federal University

Email: gilemal59@gmail.com
Russian Federation, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, 420008

F. M. Gafarov

Kazan Federal University

Author for correspondence.
Email: fgafarov@yandex.ru
Russian Federation, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, 420008

P. N. Ustin

Kazan Federal University

Email: pavust@mail.ru

PhD

Russian Federation, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, 420008

A. R. Khalfieva

Kazan Federal University

Email: khalfieva@inbox.ru

PhD

Russian Federation, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, 420008

References

  1. Amerise, I.L. Predicting Students Academic Achievement: A Quantile Regression Approach. International Journal of Statistics and Systems 13(1), 9–14 (2018).
  2. Aspachs O, Durante R, Graziano A, Mestres J, Reynal-Querol M, et al. (2021) Tracking the impact of COVID-19 on economic inequality at high frequency. PLOS ONE 16(3): e0249121. https://doi.org/10.1371/journal.pone.0249121
  3. Chen, L., Zhou, Y. Quantile regression in big data: A divide and conquer based strategy. Computational Statistics & Data Analysis 144, 106892 (2020). https://doi.org/10.1016/j. csda.2019.106892
  4. Costanzo, A., Desimoni, M. Beyond the mean estimate: a quantile regression analysis of inequalities in educational outcomes using INVALSI survey data. Large-scale Assess Educ 5, 14 (2017). https://doi.org/10.1186/s40536-017-0048-4
  5. Gafarov F, Minullin D, Gafarova V. Dask-based efficient clustering of educational texts. CEUR Workshop Proceedings, 3036, 362–376 (2021).
  6. Gürsakal, Necmi & Murat, Dilek. (2018). Assessment of PISA 2012 Results With Quantile Regression Analysis Within The Context of Inequality In Educational Opportunity. alphanumeric journal. 4. 41-54. https://doi.org/10.17093/ aj.2016.4.2.5000186603 .
  7. Hao, L., Naiman, D. Quantile regression. Sage, London (2007).
  8. Hu, A., Li, Ch., Wu, J. Communication-Efficient Modeling with Penalized Quantile Regression for Distributed Data. Complexity, 2021, 6341707 (2021). https://doi.org/10.1155/2021/6341707
  9. Henriques, J., Caldeira, F., Cruz, T., Simões, P. Combining K-Means and XGBoost Models for Anomaly Detection Using Log Datasets. Electronics 9, 1164 (2020). https://doi.org/10.3390/ electronics9071164
  10. Koenker, R., Basset, G. Regression quantiles. Econometrica, 46, 33–50 (1978). https://doi. org/10.2307/1913643
  11. Konstantopoulos S., Li W., Miller S., van der Ploeg A. Using Quantile Regression to Estimate Intervention Effects Beyond the Mean. Educational and Psychological Measurement 79(5), 883–910 (2019). https://doi. org/10.1177/0013164419837321
  12. Li J., Jiang Y. The Research Trend of Big Data in Education and the Impact of Teacher Psychology on Educational Development During COVID-19: A Systematic Review and Future Perspective. Front. Psychol. 12, 753388 (2021). https://doi.org/10.3389/fpsyg.2021.753388
  13. Park Y.-E. Uncovering trend-based research insights on teaching and learning in big data. Journal of Big Data 7 (93), 1–17 (2020). https:// doi.org/10.1186/s40537-020-00368-9
  14. Porter, S.R. Quantile regression: Analyzing changes in distributions instead of means. In: M. B. Paulsen (Ed.), Higher education: Handbook of theory and research, vol. 30, 335–381. Springer, Cham (2015). https://doi. org/10.1007/978-3-319-12835-1_8
  15. Rangvid, B. School composition effects in Denmark: quantile regression evidence from PISA 2000. Empirical Economics 33, 359–388 (2007). https://doi.org/10.1007/s00181-007-0133-6
  16. Rocklin M. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In: Proceedings of the 14th Python in Science Conference, pp. 126–132, (2015) https://doi. org/10.25080/Majora-7b98e3ed-013
  17. Sorensen, L. “Big Data” in Educational Administration: An Application for Predicting School Dropout Risk. Educational Administration Quarterly 55, 404–446 (2019). https://doi. org/10.1177/0013161X18799439
  18. Tian, M. A Quantile Regression Analysis of Family Background Factor Effects on Mathematical Achievement. Journal of Data Science 4, 461–478 (2006). https://doi.org/10.6339/ JDS.2006.04(4).283
  19. Ustin, P., Sabirova E., Alishev T., Gafarov F. Key Factors of Teacher’s Professional Success in the Digital Educational Environment. ARPHA Proceedings 5: 1747-1761 (2022) https:// doi.org/10.3897/ap.5.e1747
  20. Yu, K. Quantile Regression: Applications and Current Research Areas. Journal of the Royal Statistical Society Series D (The Statistician) 52(3), 331–350 (2003). https://doi. org/10.1111/1467-9884.00363
  21. Yuan, X., Li, Y., Dong, X., Liu T. Optimal subsampling for composite quantile regression in big data. Statistical Papers (2022). https://doi. org/10.1007/s00362-022-01292-1

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).