Технология редактирования генома и возможности ее применения в клеточной нейробиологии


Цитировать

Полный текст

Аннотация

В настоящее время благодаря серии фундаментальных открытий в клеточной и молекулярной биологии появилось несколько высокотехнологичных подходов к моделированию неврологических (в первую очередь нейродегенеративных) заболеваний человека. Среди них – направленное геномное редактирование с помощью искусственных нуклеазных систем (CRISPR/CAS9 и др.), позволяющее осуществлять высокоспецифичное исправление генетических дефектов на уровне клеток. Особенно перспективным представляется применение технологии геномного редактирования на специализированных нейронах и индуцированных плюрипотентных стволовых клетках (ИПСК), получаемых из фибробластов больных с наследственными формами нейродегенерации в результате клеточного репрограммирования. В статье проводится краткий анализ систем программируемых нуклеаз, рассматриваются механизмы их работы, преимущества, недостатки и возможности применения в моделировании и коррекции нейродегенеративных заболеваний. Обобщен собственный опыт в клеточном моделировании PARK2-формы болезни Паркинсона на культуре дофаминергических нейронов, дифференцированных из ИПСК. Представлены предварительные данные, связанные с возможностью редактирования генома клеток в мутантных сайтах PARK2.

Об авторах

А. С. Ветчинова

ФГБНУ «Научный центр неврологии»

Email: snillario@gmail.com
Россия, Москва

E. В. Коновалова

ФГБНУ «Научный центр неврологии»

Email: snillario@gmail.com
Россия, Москва

E. A. Лунев

Балтийский федеральный университет им. И. Канта

Email: snillario@gmail.com
Россия, Калининград

Сергей Николаевич Иллариошкин

ФГБНУ «Научный центр неврологии»

Автор, ответственный за переписку.
Email: snillario@gmail.com
ORCID iD: 0000-0002-2704-6282

д.м.н., проф., член-корр. РАН, зам. директора по научной работе, рук. отдела исследований мозга

Россия, Москва

Список литературы

  1. Богомазова А.Н., Васина Е.М., Киселев С.Л. и др. Генетическое репрограммирование клеток: новая технология для фундаментальных исследований и практического использования. Генетика. 2015; 4: 466–478.
  2. Васильева Е.А., Мелино Д., Барлев Н.А. Применение системы направленного геномного редактирования CRISPR/Cas к плюрипотентным стволовым клеткам. Цитология. 2015; 1: 19–30.
  3. Завалишин И.А., Яхно Н.Н., Гаврилова С.И. (ред.) Нейродегенеративные болезни и старение. М.: А.А.А., 2001.
  4. Загоровская Т.Б., Иллариошкин С.Н., Сломинский П.А. и др. Клинико-генетический анализ ювенильного паркинсонизма в России. Журн. неврологии и психиатрии им. С.С. Корсакова. 2004; 8: 66–72.
  5. Иллариошкин С.Н., Загоровская И.А., Иванова-Смоленская И.А.,Маркова Е.Д. Генетические аспекты болезни Паркинсона. Неврол. журн. 2002; 5: 47–51.
  6. Иллариошкин С.Н., Иванова-Смоленская И.А., Маркова Е.Д. Новый механизм мутации у человека: экспансия тринуклеотидных повторов. Генетика. 1995; 31: 1478–1489.
  7. Коновалова Е.В., Лопачева О.М., Гривенников И.А. и др. Экспрессия про- и антиапоптотических факторов в индуцированных плюрипотентных стволовых клетках здорового донора и пациента с болезнью Паркинсона, являющегося носителем мутаций в гене PARK2. Acta Naturae. 2015; 7 (4).
  8. Коновалова Е.В., Новосадова Е.В., Гривенников И.А., Иллариош-кин С.Н. Фенотипические различия культур нейронов, получаемых путем репрограммирования фибробластов пациентов с мутациями в генах паркинсонизма LRRK2 и PARK2. Бюлл. эксперим. биол. мед. 2015; 6: 749–753.
  9. Лебедева О.С., Лагарькова М.А., Иллариошкин С.Н. и др. Индуцированные плюрипотентные стволовые клетки: новые возможности в нейробиологии и нейротрансплантологии. Анн. клин. и эксперим. неврол. 2011; 4: 37–45.
  10. Лысогорская Е.В., Абрамычева Н.Ю., Захарова М.Н., Иллариошкин С.Н. Частота мутаций в гене SOD1 у российских пациентов с боковым амиотрофическим склерозом. Мед. генетика 2013; 4: 32–37.
  11. Медведев С.П., Шевченко А.И., Сухих Г.Т., Закиян С.М. Индуцированные плюрипотентные стволовые клетки. Новосибирск: Изд. Сибирского отделения РАН, 2014.
  12. Немудрый А.А., Валетдинова К.Р., Медведев С.П., Закиян С.М. Системы редактирования генома TALEN и CRISPR/Cas – инструменты открытий. Acta Naturae. 2014; 23: 20–42.
  13. Barrangou R., Fremaux C., Deveau H. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007; 315: 1709–1712.
  14. Brookmeyer R., Johnson E., Ziegler-Graham K., Arrighi M.H. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s and Dementia. 2007; 3: 186–191.
  15. Chapdelaine P., Coulombe Z., Chikh A. et al. A potential new therapeutic approach for Friedreich ataxia: induction of frataxin expression with TALE proteins. Mol. Ther. Nucleic Acids. 2013; 2 (9): e119.
  16. Chen K., Gao C.J. TALENs: customizable molecular DNA scissors for genome engineering of plants. Genet. Genomics. 2013; 40: 271–279.
  17. Cong L., Ran F.A., Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339 (6121): 819–823.
  18. Fonfara I., Le Rhun A., Chylinski K. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucl. Acids Res. 2014; 42: 2577–2590.
  19. Gaj T., Gersbach C., Barbas C. ZNF, TALEN and CRISPR/CASbased methods for genome engineering. Trends Biotechnol. 2013; 31: 397–405.
  20. Garriga-Canut M., Agustin-Pavon C., Herrmann F. et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. PNAS 2012; 109: 3136–3145.
  21. Guo J.L., Lee V.M.Y. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat. Med. 2014; 20: 130–138.
  22. Hargus G, Ehrlich M., Hallmann A.-L., Kuhlmann T. Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol. 2014; 127: 151–173.
  23. Hunsberger J.G., Efthymiou A.G., Malik N., Behl M. Induced pluripotent stem cell models to enable in vitro models for screening in the CNS. Stem Cells Devel. 2015; 24: 1852–1864.
  24. Ingre C., Roos P.M., Piehl F. et al. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 2015; 7: 181–193.
  25. Jenner P., Morris H.R., Robbins T.W. et al. Parkinson’s disease – the debate on the clinical phenomenology, aetiology, pathology and pathogenesis. J. Parkinsons Dis. 2013; 3: 1–11.
  26. Kiskinis E., Sandoe J., Williams L. et al. Pathways disrupted in human ALS motor neurons indentified through genetic correction of mutant SOD1. Cell Stem Cell. 2014; 14: 781-795.
  27. Lieber M.R. The mechanism of double-strand DNA break repair bythe nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010; 79: 181–211.
  28. Mali P., Yang L., Esvelt K.M. et al. RNA-guided human genome engineering via Cas9. Science. 2012; 339: 823-826.
  29. Mojica F.J., Díez-Villaseñor C., García-Martínez J., Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005; 60: 174–182.
  30. Moynahan M.E., Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 2010; 11: 196–207.
  31. Periquet M., Lücking C.B., Vaughan J.R. et al. Origin of the mutations in the parkin gene in Europe: exon rearrangements are independent recurrent events, whereas point mutations may result from founder effects. Am. J. Hum. Genet. 2001; 68: 617–626.
  32. Schmid-Burgk J.L., Schmidt T., Kaiser V. et al. A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. Nat. Biotechnol. 2013; 31: 76–81.
  33. Singleton A.B., Farrer M.J., Bonifati V. The genetics of Parkinson’s disease: progress and therapeutic implications. Mov. Disord. 2013; 28: 14–23.
  34. Soldner F., Laganiere J., Cheng A. et al. Generation of isogenic pluripotent stem cells differing exclusively at two early-onset Parkinson point mutations. Cell. 2011; 146: 318–331.
  35. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663–676.
  36. Urnov F.D., Rebar E.J., Holmes M.C. et al. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010; 11: 636–646.
  37. Wiedenheft B., Sternberg S.H., Doudna J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012; 482: 331–338.
  38. Wirdefeldt K., Adami H.O., Cole P., Trichopoulos D., Mandel J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur. J. Epidemiol. 2011; 26 (Suppl. 1): S1–58.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Vetchinova A.S., Konovalova E.V., Lunev E.A., Illarioshkin S.N., 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».