A genome editing technology and capabilities of its application in cellular neurobiology


Cite item

Full Text

Abstract

A number of fundamental breakthroughs in cellular and molecular biology provided the basis for several modern sophisticated approaches to modeling of human neurological (primarily neurodegenerative) diseases. In particular, targeted genome editing by artificial nuclease systems (CRISPR/CAS9, etc.) enables a highly specific correction of genetic defects at the cellular level. An especially promising area is application of the genome editing technology in specialized neurons and induced pluripotent stem cells (iPSCs) derived from fibroblasts of patients with inherited forms of neurodegeneration by cell reprogramming. The article provides a brief analysis of programmable nuclease systems and describes mechanisms of their activity as well as advantages, disadvantages, and capabilities of their applications in modeling and correction of neurodegenerative diseases. The authors generalize their own experience in cellular modeling of the PARK2 type of Parkinson’s disease on the culture of dopaminergic neurons differentiated from iPSCs. The article provides preliminary data related to the capability of editing the cellular genome at mutant sites PARK2.

About the authors

А. S. Vetchinova

Research Center of Neurology

Email: snillario@gmail.com
Russian Federation, Moscow

E. V. Konovalova

Research Center of Neurology

Email: snillario@gmail.com
Russian Federation, Moscow

E. A. Lunev

I. Kant Baltic Federal University

Email: snillario@gmail.com
Russian Federation, Kaliningrad

Sergey N. Illarioshkin

Research Center of Neurology

Author for correspondence.
Email: snillario@gmail.com
ORCID iD: 0000-0002-2704-6282

D. Sci. (Med.), Prof., Corr. Member of the Russian Academy of Sciences, Deputy Director, Head, Department for brain research

Russian Federation, Moscow

References

  1. Богомазова А.Н., Васина Е.М., Киселев С.Л. и др. Генетическое репрограммирование клеток: новая технология для фундаментальных исследований и практического использования. Генетика. 2015; 4: 466–478.
  2. Васильева Е.А., Мелино Д., Барлев Н.А. Применение системы направленного геномного редактирования CRISPR/Cas к плюрипотентным стволовым клеткам. Цитология. 2015; 1: 19–30.
  3. Завалишин И.А., Яхно Н.Н., Гаврилова С.И. (ред.) Нейродегенеративные болезни и старение. М.: А.А.А., 2001.
  4. Загоровская Т.Б., Иллариошкин С.Н., Сломинский П.А. и др. Клинико-генетический анализ ювенильного паркинсонизма в России. Журн. неврологии и психиатрии им. С.С. Корсакова. 2004; 8: 66–72.
  5. Иллариошкин С.Н., Загоровская И.А., Иванова-Смоленская И.А.,Маркова Е.Д. Генетические аспекты болезни Паркинсона. Неврол. журн. 2002; 5: 47–51.
  6. Иллариошкин С.Н., Иванова-Смоленская И.А., Маркова Е.Д. Новый механизм мутации у человека: экспансия тринуклеотидных повторов. Генетика. 1995; 31: 1478–1489.
  7. Коновалова Е.В., Лопачева О.М., Гривенников И.А. и др. Экспрессия про- и антиапоптотических факторов в индуцированных плюрипотентных стволовых клетках здорового донора и пациента с болезнью Паркинсона, являющегося носителем мутаций в гене PARK2. Acta Naturae. 2015; 7 (4).
  8. Коновалова Е.В., Новосадова Е.В., Гривенников И.А., Иллариош-кин С.Н. Фенотипические различия культур нейронов, получаемых путем репрограммирования фибробластов пациентов с мутациями в генах паркинсонизма LRRK2 и PARK2. Бюлл. эксперим. биол. мед. 2015; 6: 749–753.
  9. Лебедева О.С., Лагарькова М.А., Иллариошкин С.Н. и др. Индуцированные плюрипотентные стволовые клетки: новые возможности в нейробиологии и нейротрансплантологии. Анн. клин. и эксперим. неврол. 2011; 4: 37–45.
  10. Лысогорская Е.В., Абрамычева Н.Ю., Захарова М.Н., Иллариошкин С.Н. Частота мутаций в гене SOD1 у российских пациентов с боковым амиотрофическим склерозом. Мед. генетика 2013; 4: 32–37.
  11. Медведев С.П., Шевченко А.И., Сухих Г.Т., Закиян С.М. Индуцированные плюрипотентные стволовые клетки. Новосибирск: Изд. Сибирского отделения РАН, 2014.
  12. Немудрый А.А., Валетдинова К.Р., Медведев С.П., Закиян С.М. Системы редактирования генома TALEN и CRISPR/Cas – инструменты открытий. Acta Naturae. 2014; 23: 20–42.
  13. Barrangou R., Fremaux C., Deveau H. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007; 315: 1709–1712.
  14. Brookmeyer R., Johnson E., Ziegler-Graham K., Arrighi M.H. Forecasting the global burden of Alzheimer’s disease. Alzheimer’s and Dementia. 2007; 3: 186–191.
  15. Chapdelaine P., Coulombe Z., Chikh A. et al. A potential new therapeutic approach for Friedreich ataxia: induction of frataxin expression with TALE proteins. Mol. Ther. Nucleic Acids. 2013; 2 (9): e119.
  16. Chen K., Gao C.J. TALENs: customizable molecular DNA scissors for genome engineering of plants. Genet. Genomics. 2013; 40: 271–279.
  17. Cong L., Ran F.A., Cox D. et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339 (6121): 819–823.
  18. Fonfara I., Le Rhun A., Chylinski K. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucl. Acids Res. 2014; 42: 2577–2590.
  19. Gaj T., Gersbach C., Barbas C. ZNF, TALEN and CRISPR/CASbased methods for genome engineering. Trends Biotechnol. 2013; 31: 397–405.
  20. Garriga-Canut M., Agustin-Pavon C., Herrmann F. et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. PNAS 2012; 109: 3136–3145.
  21. Guo J.L., Lee V.M.Y. Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases. Nat. Med. 2014; 20: 130–138.
  22. Hargus G, Ehrlich M., Hallmann A.-L., Kuhlmann T. Human stem cell models of neurodegeneration: a novel approach to study mechanisms of disease development. Acta Neuropathol. 2014; 127: 151–173.
  23. Hunsberger J.G., Efthymiou A.G., Malik N., Behl M. Induced pluripotent stem cell models to enable in vitro models for screening in the CNS. Stem Cells Devel. 2015; 24: 1852–1864.
  24. Ingre C., Roos P.M., Piehl F. et al. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 2015; 7: 181–193.
  25. Jenner P., Morris H.R., Robbins T.W. et al. Parkinson’s disease – the debate on the clinical phenomenology, aetiology, pathology and pathogenesis. J. Parkinsons Dis. 2013; 3: 1–11.
  26. Kiskinis E., Sandoe J., Williams L. et al. Pathways disrupted in human ALS motor neurons indentified through genetic correction of mutant SOD1. Cell Stem Cell. 2014; 14: 781-795.
  27. Lieber M.R. The mechanism of double-strand DNA break repair bythe nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010; 79: 181–211.
  28. Mali P., Yang L., Esvelt K.M. et al. RNA-guided human genome engineering via Cas9. Science. 2012; 339: 823-826.
  29. Mojica F.J., Díez-Villaseñor C., García-Martínez J., Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 2005; 60: 174–182.
  30. Moynahan M.E., Jasin M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 2010; 11: 196–207.
  31. Periquet M., Lücking C.B., Vaughan J.R. et al. Origin of the mutations in the parkin gene in Europe: exon rearrangements are independent recurrent events, whereas point mutations may result from founder effects. Am. J. Hum. Genet. 2001; 68: 617–626.
  32. Schmid-Burgk J.L., Schmidt T., Kaiser V. et al. A ligation-independent cloning technique for high-throughput assembly of transcription activator–like effector genes. Nat. Biotechnol. 2013; 31: 76–81.
  33. Singleton A.B., Farrer M.J., Bonifati V. The genetics of Parkinson’s disease: progress and therapeutic implications. Mov. Disord. 2013; 28: 14–23.
  34. Soldner F., Laganiere J., Cheng A. et al. Generation of isogenic pluripotent stem cells differing exclusively at two early-onset Parkinson point mutations. Cell. 2011; 146: 318–331.
  35. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663–676.
  36. Urnov F.D., Rebar E.J., Holmes M.C. et al. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010; 11: 636–646.
  37. Wiedenheft B., Sternberg S.H., Doudna J.A. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012; 482: 331–338.
  38. Wirdefeldt K., Adami H.O., Cole P., Trichopoulos D., Mandel J. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur. J. Epidemiol. 2011; 26 (Suppl. 1): S1–58.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Vetchinova A.S., Konovalova E.V., Lunev E.A., Illarioshkin S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».