Pathogenic and protective effects of environmental factors in Parkinson’s disease: analysis of epidemiological data and molecular mechanisms

Cover Page

Cite item

Abstract

Parkinson’s disease (PD) is a multisystem neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the midbrain as its key morphological feature. Among neurodegenerative diseases, PD ranks second in prevalence, surpassed only by Alzheimer disease. Epidemiological projections suggest the global population of diagnosed PD patients may reach 8.7 million by 2030, highlighting its significance as a major contemporary medical and social challenge. The progression of the disease leads to persistent maladjustment in all aspects of the patient’s life, resulting in a loss of human resources. Approximately 85–90% of PD cases are sporadic and multifactorial. Recent research has identified genetic mutations predisposing to PD. However, the contribution of environmental factors to PD pathogenesis remains unclear.

This review examines current evidence on both pathogenic and protective effects of environmental factors in the development and progression of sporadic PD.

We conducted a comprehensive search of Russian- and English-language full-text publications over 25 years using eLIBRARY.RU, PubMed, Google Scholar, and Web of Science databases with relevant keywords. The review analyzes pathogenic and protective environmental factors in PD, along with factors of uncertain significance.

About the authors

Natalia G. Zhukova

Siberian State Medical University

Email: znatali@yandex.ru
ORCID iD: 0000-0001-6547-6622

Dr. Sci. (Med.), Professor, Professor, Department of neurology and neurosurgery

Russian Federation, Tomsk

Zainutdinkhuzha F. Sayfitdinkhuzhaev

Siberian State Medical University

Author for correspondence.
Email: sayfutdinxodjaev2002@gmail.com
ORCID iD: 0009-0007-2184-2708

research assistant, Scientific and educational laboratory of cognitive neurophysiology of psychosomatic relationships

Russian Federation, Tomsk

Dilorom A. Nurmatova

City Children’s Clinical Hospital No. 1

Email: okhunbaev@gmail.com
ORCID iD: 0009-0002-2031-8940

Cand. Sci. (Med.), Assistant professor, Head, Department of neurology of older children

Uzbekistan, Tashkent

Irina A. Zhukova

City Children’s Clinical Hospital No. 1

Email: zhukova.ia@ssmu.ru
ORCID iD: 0000-0001-5679-1698

Cand. Sci. (Med.), Assistant Professor, Expert, Clinical Research Center

Uzbekistan, Tashkent

Jakhongir M. Okhunboev

City Children’s Clinical Hospital No. 1

Email: okhunbaev@gmail.com
ORCID iD: 0009-0002-7312-7750

neurologist, Department of neurology of elderly children

Uzbekistan, Tashkent

Alexandra Ya. Masenko

Siberian State Medical University

Email: masenkosasha@yandex.ru
ORCID iD: 0009-0003-4583-5407

postgraduate student, Department of neurology and neurosurgery

Russian Federation, Tomsk

Olesya V. Gaponova

Siberian State Medical University

Email: masenkosasha@yandex.ru
ORCID iD: 0009-0009-6061-0314

postgraduate student, Department of neurology and neurosurgery

Russian Federation, Tomsk

References

  1. Таппахов А.А., Попова Т.Е., Николаева Т.Я. и др. Генетическая основа болезни Паркинсона. Неврология, нейропсихиатрия, психосоматика. 2017;9(1):96–100. Tappakhov AA, Popova TE, Nikolaeva TYa, et al. The genetic basis of Parkinson’s disease. Neurology, neuropsychiatry, psychosomatics. 2017;9(1):96–100. doi: 10.14412/2074-2711-2017-1-96-100
  2. Титова Н.В., Чаудури K.Р. Немоторные симптомы болезни Паркинсона: подводная часть айсберга. Анналы клинической и экспериментальной неврологии. 2017; 11(4): 5–18. Titova NV, Chauduri KR. Non-motor symptoms of Parkinson’s disease: the underwater part of the iceberg. Annals of Clinical and Experimental Neurology. 2017;11(4):5–18. doi: 10.18454/ACEN.2017.4.1
  3. Жукова Н.Г., Матвеева М.В., Казанцева П.Е. и др. Саркопения как немоторный симптом болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2024;124(9):15–22. Zhukova NG, Matveeva MV, Kazantseva PE, et al. Sarcopenia as a non-motor symptom of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(9):15–22. doi: 10.17116/jnevro202412409115
  4. Коломан И.И., Чимагомедова А.Ш. Влияние асимметрии моторных симптомов на когнитивные функции при болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2020;120(10-2):74–79. Koloman II, Chimagomedova ASh. The impact of motor symptom asymmetry on cognitive function in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. Special issues. 2020;120(10-2):74–79. doi: 10.17116/jnevro202012010274
  5. Abbas MM, Xu Z, Tan LC. Epidemiology of Parkinson’s disease — East versus West. Mov Disord Clin Pract. 2017;5(1):14–28. doi: 10.1002/mdc3.12568
  6. Сайфитдинхужаев З.Ф., Жукова Н.Г., Насырова Р.Ф., Нурматова Д.А. Современные представления о патогенезе спорадических форм болезни Паркинсона. Патогенез. 2025;23(2): 4–13. Sayfitdinkhuzhaev ZF, Zhukova NG, Nasyrova RF, Nurmatova DA. Modern concepts of the pathogenesis of sporadic forms of Parkinson’s disease. Pathogenesis. 2025;23(2):4–13. doi: 10.48612/path/2310-0435.2025.02.4-13
  7. Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91(4):1161–1218. doi: 10.1152/physrev.00022.2010
  8. Lill CM, Roehr JT, McQueen MB, et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDgene database. PLoS Genet. 2012;8(3):e1002548. doi: 10.1371/journal.pgen.1002548
  9. Zavodszky E, Seaman MN, Moreau K, et al. Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat Commun. 2014;5:3828. doi: 10.1038/ncomms4828
  10. Pankratz N, Uniacke SK, Halter CA, et al. Genes influencing Parkinson disease onset: replication of PARK3 and identification of novel loci. Neurology. 2004;62(9):1616–1618. doi: 10.1212/01.wnl.0000123112.51368.10
  11. Kawamoto Y, Kobayashi Y, Suzuki Y, et al. Accumulation of HtrA2/Omi in neuronal and glial inclusions in brains with alpha-synucleinopathies. J Neuropathol Exp Neurol. 2008; 67(10):984–993. doi: 10.1097/NEN.0b013e31818809f4
  12. Ruiz-Martinez J, Krebs CE, Makarov V, et al. GIGYF2 mutation in late-onset Parkinson’s disease with cognitive impairment. J Hum Genet. 2015;60(10):637–640. doi: 10.1038/jhg.2015.69
  13. Silvera D, Arju R, Darvishian F, et al. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol. 2009;11(7):903–908. doi: 10.1038/ncb1900
  14. Kim JM, Lee JY, Kim HJ, et al. The LRRK2 G2385R variant is a risk factor for sporadic Parkinson’s disease in the Korean population. Parkinsonism Relat Disord. 2010;16(2):85–88. doi: 10.1016/j.parkreldis.2009.10.004
  15. Pugin A, Faundes V, Santa María L, et al. Clinical, molecular, and pharmacological aspects of FMR1 related disorders. Neurologia. 2017;32(4):241–252. doi: 10.1016/j.nrl.2014.10.009
  16. Wirdefeldt K, Adami HO, Cole P, et al. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol. 2011;26(Suppl 1):1–58. doi: 10.1007/s10654-011-9581-6
  17. Meredith GE, Sonsalla PK, Chesselet MF. Animal models of Parkinson’s disease progression. Acta Neuropathol. 2008;115(4):385–398. doi: 10.1007/s00401-008-0350-x
  18. Gunnarsson LG, Bodin L. Parkinson’s disease and occupational exposures: a systematic literature review and meta-analyses. Scand J Work Environ Health. 2017;43(3):197–209. doi: 10.5271/sjweh.3641
  19. Narayan S, Liew Z, Paul K, et al. Household organophosphorus pesticide use and Parkinson’s disease. Int J Epidemiol. 2013;42(5):1476–1485. doi: 10.1093/ije/dyt170
  20. Wan N, Lin G. Parkinson’s disease and pesticides exposure: new findings from a comprehensive study in Nebraska, USA. J Rural Health. 2016;32(3):303–313. doi: 10.1111/jrh.12154
  21. Иллариошкин С.Н. Современные представления об этиологии болезни Паркинсона. Неврологический журнал. 2015;20(4):4–13. Illarioshkin SN. Modern ideas about the etiology of Parkinson’s disease. Neurological Journal. 2015;20(4):4–13.
  22. Kenborg L, Rugbjerg K, Lee PC, et al. Head injury and risk for Parkinson disease: results from a Danish case-control study. Neurology. 2015;84(11):1098–1103. doi: 10.1212/WNL.0000000000001362
  23. Li X, Li W, Liu G, et al. Association between cigarette smoking and Parkinson’s disease: a meta-analysis. Arch Gerontol Geriatr. 2015;61(3):510–516. doi: 10.1016/j.archger.2015.08.004
  24. Nielsen SS, Franklin GM, Longstreth WT, et al. Nicotine from edible Solanaceae and risk of Parkinson disease. Ann Neurol. 2013;74(3):472–477. doi: 10.1002/ana.23884
  25. Costa J, Lunet N, Santos C, et al. Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Alzheimers Dis. 2010;20(Suppl 1):221–238. doi: 10.3233/JAD-2010-091525
  26. Qi H, Li S. Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int. 2014;14(2):430–439. doi: 10.1111/ggi.12123
  27. Tan LC, Koh WP, Yuan JM, et al. Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol. 2008;167(5):553–560. doi: 10.1093/aje/kwm338
  28. Gatto EM, Melcon C, Parisi VL, et al. Inverse association between yerba mate consumption and idiopathic Parkinson’s disease. A case-control study. J Neurol Sci. 2015;356(1-2):163–167. doi: 10.1016/j.jns.2015.06.043
  29. Yang F, Trolle Lagerros Y, Bellocco R, et al. Physical activity and risk of Parkinson’s disease in the Swedish National March Cohort. Brain. 2015;138(Pt 2):269–275. doi: 10.1093/brain/awu323
  30. Yang XL, Luo Q, Song HX, et al. Related factors and prevalence of Parkinson’s disease among Uygur residents in Hetian, Xinjiang Uygur Autonomous Region. Genet Mol Res. 2015;14(3):8539–8546. doi: 10.4238/2015.July.31.1
  31. Wang YL, Wang YT, Li JF, et al. Body mass index and risk of Parkinson’s disease: a dose‐response meta‐analysis of prospective studies. PLoS One. 2015;10(6):e0131778. doi: 10.1371/journal.pone.0131778
  32. van der Marck MA, Dicke HC, Uc EY, et al. Body mass index in Parkinson’s disease: a meta‐analysis. Parkinsonism Relat Disord 2012;18(3):263–267. doi: 10.1016/j.parkreldis.2011.10.016
  33. Noyce AJ, Kia DA, Hemani G, et al. Estimating the causal influence of body mass index on risk of Parkinson disease: a Mendelian randomisation study. PLoS Med. 2017;14(6):e1002314. doi: 10.1371/journal.pmed.1002314
  34. Schlesinger I, Schlesinger N. Uric acid in Parkinson’s disease. Mov Disord. 2008;23(12):1653–1657. doi: 10.1002/mds.22139
  35. Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant‐ and radical‐caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1981;78(11):6858–6862. doi: 10.1073/pnas.78.11.6858
  36. Gao X, O’Reilly EJ, Schwarzschild MA, Ascherio A. Prospective study of plasma urate and risk of Parkinson disease in men and women. Neurology. 2016;86(6):520–526. doi: 10.1212/WNL.0000000000002351
  37. Shen C, Guo Y, Luo W, et al. Serum urate and the risk of Parkinson’s disease: results from a meta‐analysis. Can J Neurol Sci. 2013;40(1):73–79. doi: 10.1017/s0317167100012981
  38. Alonso A, Rodriguez LA, Logroscino G, Hernan MA. Gout and risk of Parkinson disease: a prospective study. Neurology. 2007;69(17):1696–1700. doi: 10.1212/01.wnl.0000279518.10072.df
  39. Wen M, Zhou B, Chen YH, et al. Serum uric acid levels in patients with Parkinson’s disease: a meta‐analysis. PLoS One. 2017;12(3):e0173731. doi: 10.1371/journal.pone.0173731
  40. Powers KM, Smith‐Weller T, Franklin GM, et al. Dietary fats, cholesterol and iron as risk factors for Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(1):47–52. doi: 10.1016/j.parkreldis.2008.03.002
  41. Johnson CC, Gorell JM, Rybicki BA, et al. Adult nutrient intake as a risk factor for Parkinson’s disease. Int J Epidemiol. 1999;28(6):1102–1109. doi: 10.1093/ije/28.6.1102
  42. Tan LC, Methawasin K, Tan EK, et al. Dietary cholesterol, fats and risk of Parkinson’s disease in the Singapore Chinese Health Study. J Neurol Neurosurg Psychiatry. 2016;87(1):86–92. doi: 10.1136/jnnp-2014-310065
  43. Miyake Y, Sasaki S, Tanaka K, et al. Dietary fat intake and risk of Parkinson’s disease: a case‐control study in Japan. J Neurol Sci. 2010;288 (1-2):117–122. doi: 10.1016/j.jns.2009.09.021
  44. Zhang D, Jiang H, Xie J. Alcohol intake and risk of Parkinson’s disease: a meta‐analysis of observational studies. Mov Disord. 2014;29(6):819–822. doi: 10.1002/mds.25863
  45. Bettiol SS, Rose TC, Hughes CJ, Smith LA. Alcohol consumption and Parkinson’s disease risk: a review of recent findings. J Parkinsons Dis. 2015;5(3):425–442. doi: 10.3233/JPD-150533
  46. Eriksson AK, Lofving S, Callaghan RC, Allebeck P. Alcohol use disorders and risk of Parkinson’s disease: findings from a Swedish national cohort study 1972–2008. BMC Neurol. 2013;13:190. doi: 10.1186/1471-2377-13-190
  47. Jiang W, Ju C, Jiang H, Zhang D. Dairy foods intake and risk of Parkinson’s disease: a dose‐response meta‐analysis of prospective cohort studies. Eur J Epidemiol. 2014;29(9):613–619. doi: 10.1007/s10654-014-9921-4
  48. Choi HK, Atkinson K, Karlson EW, et al. Purine‐rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med. 2004;350(11):1093–1103. doi: 10.1056/NEJMoa035700
  49. Miyake Y, Tanaka K, Fukushima W, et al. Lack of association of dairy food, calcium, and vitamin D intake with the risk of Parkinson’s disease: a case‐control study in Japan. Parkinsonism Relat Disord. 2011;17(2):112–116. doi: 10.1016/j.parkreldis.2010.11.018

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Zhukova N.G., Sayfitdinkhuzhaev Z.F., Nurmatova D.A., Zhukova I.A., Okhunboev J.M., Masenko A.Y., Gaponova O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).