Pathogenic and protective effects of environmental factors in Parkinson’s disease: analysis of epidemiological data and molecular mechanisms
- Authors: Zhukova N.G.1, Sayfitdinkhuzhaev Z.F.1, Nurmatova D.A.2, Zhukova I.A.2, Okhunboev J.M.2, Masenko A.Y.1, Gaponova O.V.1
-
Affiliations:
- Siberian State Medical University
- City Children’s Clinical Hospital No. 1
- Issue: Vol 19, No 4 (2025)
- Pages: 75-82
- Section: Reviews
- URL: https://ogarev-online.ru/2075-5473/article/view/380120
- DOI: https://doi.org/10.17816/ACEN.1275
- EDN: https://elibrary.ru/BYIZBT
- ID: 380120
Cite item
Abstract
Parkinson’s disease (PD) is a multisystem neurodegenerative disorder characterized by progressive loss of dopaminergic neurons in the substantia nigra of the midbrain as its key morphological feature. Among neurodegenerative diseases, PD ranks second in prevalence, surpassed only by Alzheimer disease. Epidemiological projections suggest the global population of diagnosed PD patients may reach 8.7 million by 2030, highlighting its significance as a major contemporary medical and social challenge. The progression of the disease leads to persistent maladjustment in all aspects of the patient’s life, resulting in a loss of human resources. Approximately 85–90% of PD cases are sporadic and multifactorial. Recent research has identified genetic mutations predisposing to PD. However, the contribution of environmental factors to PD pathogenesis remains unclear.
This review examines current evidence on both pathogenic and protective effects of environmental factors in the development and progression of sporadic PD.
We conducted a comprehensive search of Russian- and English-language full-text publications over 25 years using eLIBRARY.RU, PubMed, Google Scholar, and Web of Science databases with relevant keywords. The review analyzes pathogenic and protective environmental factors in PD, along with factors of uncertain significance.
About the authors
Natalia G. Zhukova
Siberian State Medical University
Email: znatali@yandex.ru
ORCID iD: 0000-0001-6547-6622
Dr. Sci. (Med.), Professor, Professor, Department of neurology and neurosurgery
Russian Federation, TomskZainutdinkhuzha F. Sayfitdinkhuzhaev
Siberian State Medical University
Author for correspondence.
Email: sayfutdinxodjaev2002@gmail.com
ORCID iD: 0009-0007-2184-2708
research assistant, Scientific and educational laboratory of cognitive neurophysiology of psychosomatic relationships
Russian Federation, TomskDilorom A. Nurmatova
City Children’s Clinical Hospital No. 1
Email: okhunbaev@gmail.com
ORCID iD: 0009-0002-2031-8940
Cand. Sci. (Med.), Assistant professor, Head, Department of neurology of older children
Uzbekistan, TashkentIrina A. Zhukova
City Children’s Clinical Hospital No. 1
Email: zhukova.ia@ssmu.ru
ORCID iD: 0000-0001-5679-1698
Cand. Sci. (Med.), Assistant Professor, Expert, Clinical Research Center
Uzbekistan, TashkentJakhongir M. Okhunboev
City Children’s Clinical Hospital No. 1
Email: okhunbaev@gmail.com
ORCID iD: 0009-0002-7312-7750
neurologist, Department of neurology of elderly children
Uzbekistan, TashkentAlexandra Ya. Masenko
Siberian State Medical University
Email: masenkosasha@yandex.ru
ORCID iD: 0009-0003-4583-5407
postgraduate student, Department of neurology and neurosurgery
Russian Federation, TomskOlesya V. Gaponova
Siberian State Medical University
Email: masenkosasha@yandex.ru
ORCID iD: 0009-0009-6061-0314
postgraduate student, Department of neurology and neurosurgery
Russian Federation, TomskReferences
- Таппахов А.А., Попова Т.Е., Николаева Т.Я. и др. Генетическая основа болезни Паркинсона. Неврология, нейропсихиатрия, психосоматика. 2017;9(1):96–100. Tappakhov AA, Popova TE, Nikolaeva TYa, et al. The genetic basis of Parkinson’s disease. Neurology, neuropsychiatry, psychosomatics. 2017;9(1):96–100. doi: 10.14412/2074-2711-2017-1-96-100
- Титова Н.В., Чаудури K.Р. Немоторные симптомы болезни Паркинсона: подводная часть айсберга. Анналы клинической и экспериментальной неврологии. 2017; 11(4): 5–18. Titova NV, Chauduri KR. Non-motor symptoms of Parkinson’s disease: the underwater part of the iceberg. Annals of Clinical and Experimental Neurology. 2017;11(4):5–18. doi: 10.18454/ACEN.2017.4.1
- Жукова Н.Г., Матвеева М.В., Казанцева П.Е. и др. Саркопения как немоторный симптом болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2024;124(9):15–22. Zhukova NG, Matveeva MV, Kazantseva PE, et al. Sarcopenia as a non-motor symptom of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(9):15–22. doi: 10.17116/jnevro202412409115
- Коломан И.И., Чимагомедова А.Ш. Влияние асимметрии моторных симптомов на когнитивные функции при болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2020;120(10-2):74–79. Koloman II, Chimagomedova ASh. The impact of motor symptom asymmetry on cognitive function in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. Special issues. 2020;120(10-2):74–79. doi: 10.17116/jnevro202012010274
- Abbas MM, Xu Z, Tan LC. Epidemiology of Parkinson’s disease — East versus West. Mov Disord Clin Pract. 2017;5(1):14–28. doi: 10.1002/mdc3.12568
- Сайфитдинхужаев З.Ф., Жукова Н.Г., Насырова Р.Ф., Нурматова Д.А. Современные представления о патогенезе спорадических форм болезни Паркинсона. Патогенез. 2025;23(2): 4–13. Sayfitdinkhuzhaev ZF, Zhukova NG, Nasyrova RF, Nurmatova DA. Modern concepts of the pathogenesis of sporadic forms of Parkinson’s disease. Pathogenesis. 2025;23(2):4–13. doi: 10.48612/path/2310-0435.2025.02.4-13
- Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91(4):1161–1218. doi: 10.1152/physrev.00022.2010
- Lill CM, Roehr JT, McQueen MB, et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDgene database. PLoS Genet. 2012;8(3):e1002548. doi: 10.1371/journal.pgen.1002548
- Zavodszky E, Seaman MN, Moreau K, et al. Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat Commun. 2014;5:3828. doi: 10.1038/ncomms4828
- Pankratz N, Uniacke SK, Halter CA, et al. Genes influencing Parkinson disease onset: replication of PARK3 and identification of novel loci. Neurology. 2004;62(9):1616–1618. doi: 10.1212/01.wnl.0000123112.51368.10
- Kawamoto Y, Kobayashi Y, Suzuki Y, et al. Accumulation of HtrA2/Omi in neuronal and glial inclusions in brains with alpha-synucleinopathies. J Neuropathol Exp Neurol. 2008; 67(10):984–993. doi: 10.1097/NEN.0b013e31818809f4
- Ruiz-Martinez J, Krebs CE, Makarov V, et al. GIGYF2 mutation in late-onset Parkinson’s disease with cognitive impairment. J Hum Genet. 2015;60(10):637–640. doi: 10.1038/jhg.2015.69
- Silvera D, Arju R, Darvishian F, et al. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol. 2009;11(7):903–908. doi: 10.1038/ncb1900
- Kim JM, Lee JY, Kim HJ, et al. The LRRK2 G2385R variant is a risk factor for sporadic Parkinson’s disease in the Korean population. Parkinsonism Relat Disord. 2010;16(2):85–88. doi: 10.1016/j.parkreldis.2009.10.004
- Pugin A, Faundes V, Santa María L, et al. Clinical, molecular, and pharmacological aspects of FMR1 related disorders. Neurologia. 2017;32(4):241–252. doi: 10.1016/j.nrl.2014.10.009
- Wirdefeldt K, Adami HO, Cole P, et al. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol. 2011;26(Suppl 1):1–58. doi: 10.1007/s10654-011-9581-6
- Meredith GE, Sonsalla PK, Chesselet MF. Animal models of Parkinson’s disease progression. Acta Neuropathol. 2008;115(4):385–398. doi: 10.1007/s00401-008-0350-x
- Gunnarsson LG, Bodin L. Parkinson’s disease and occupational exposures: a systematic literature review and meta-analyses. Scand J Work Environ Health. 2017;43(3):197–209. doi: 10.5271/sjweh.3641
- Narayan S, Liew Z, Paul K, et al. Household organophosphorus pesticide use and Parkinson’s disease. Int J Epidemiol. 2013;42(5):1476–1485. doi: 10.1093/ije/dyt170
- Wan N, Lin G. Parkinson’s disease and pesticides exposure: new findings from a comprehensive study in Nebraska, USA. J Rural Health. 2016;32(3):303–313. doi: 10.1111/jrh.12154
- Иллариошкин С.Н. Современные представления об этиологии болезни Паркинсона. Неврологический журнал. 2015;20(4):4–13. Illarioshkin SN. Modern ideas about the etiology of Parkinson’s disease. Neurological Journal. 2015;20(4):4–13.
- Kenborg L, Rugbjerg K, Lee PC, et al. Head injury and risk for Parkinson disease: results from a Danish case-control study. Neurology. 2015;84(11):1098–1103. doi: 10.1212/WNL.0000000000001362
- Li X, Li W, Liu G, et al. Association between cigarette smoking and Parkinson’s disease: a meta-analysis. Arch Gerontol Geriatr. 2015;61(3):510–516. doi: 10.1016/j.archger.2015.08.004
- Nielsen SS, Franklin GM, Longstreth WT, et al. Nicotine from edible Solanaceae and risk of Parkinson disease. Ann Neurol. 2013;74(3):472–477. doi: 10.1002/ana.23884
- Costa J, Lunet N, Santos C, et al. Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Alzheimers Dis. 2010;20(Suppl 1):221–238. doi: 10.3233/JAD-2010-091525
- Qi H, Li S. Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int. 2014;14(2):430–439. doi: 10.1111/ggi.12123
- Tan LC, Koh WP, Yuan JM, et al. Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol. 2008;167(5):553–560. doi: 10.1093/aje/kwm338
- Gatto EM, Melcon C, Parisi VL, et al. Inverse association between yerba mate consumption and idiopathic Parkinson’s disease. A case-control study. J Neurol Sci. 2015;356(1-2):163–167. doi: 10.1016/j.jns.2015.06.043
- Yang F, Trolle Lagerros Y, Bellocco R, et al. Physical activity and risk of Parkinson’s disease in the Swedish National March Cohort. Brain. 2015;138(Pt 2):269–275. doi: 10.1093/brain/awu323
- Yang XL, Luo Q, Song HX, et al. Related factors and prevalence of Parkinson’s disease among Uygur residents in Hetian, Xinjiang Uygur Autonomous Region. Genet Mol Res. 2015;14(3):8539–8546. doi: 10.4238/2015.July.31.1
- Wang YL, Wang YT, Li JF, et al. Body mass index and risk of Parkinson’s disease: a dose‐response meta‐analysis of prospective studies. PLoS One. 2015;10(6):e0131778. doi: 10.1371/journal.pone.0131778
- van der Marck MA, Dicke HC, Uc EY, et al. Body mass index in Parkinson’s disease: a meta‐analysis. Parkinsonism Relat Disord 2012;18(3):263–267. doi: 10.1016/j.parkreldis.2011.10.016
- Noyce AJ, Kia DA, Hemani G, et al. Estimating the causal influence of body mass index on risk of Parkinson disease: a Mendelian randomisation study. PLoS Med. 2017;14(6):e1002314. doi: 10.1371/journal.pmed.1002314
- Schlesinger I, Schlesinger N. Uric acid in Parkinson’s disease. Mov Disord. 2008;23(12):1653–1657. doi: 10.1002/mds.22139
- Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant‐ and radical‐caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1981;78(11):6858–6862. doi: 10.1073/pnas.78.11.6858
- Gao X, O’Reilly EJ, Schwarzschild MA, Ascherio A. Prospective study of plasma urate and risk of Parkinson disease in men and women. Neurology. 2016;86(6):520–526. doi: 10.1212/WNL.0000000000002351
- Shen C, Guo Y, Luo W, et al. Serum urate and the risk of Parkinson’s disease: results from a meta‐analysis. Can J Neurol Sci. 2013;40(1):73–79. doi: 10.1017/s0317167100012981
- Alonso A, Rodriguez LA, Logroscino G, Hernan MA. Gout and risk of Parkinson disease: a prospective study. Neurology. 2007;69(17):1696–1700. doi: 10.1212/01.wnl.0000279518.10072.df
- Wen M, Zhou B, Chen YH, et al. Serum uric acid levels in patients with Parkinson’s disease: a meta‐analysis. PLoS One. 2017;12(3):e0173731. doi: 10.1371/journal.pone.0173731
- Powers KM, Smith‐Weller T, Franklin GM, et al. Dietary fats, cholesterol and iron as risk factors for Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(1):47–52. doi: 10.1016/j.parkreldis.2008.03.002
- Johnson CC, Gorell JM, Rybicki BA, et al. Adult nutrient intake as a risk factor for Parkinson’s disease. Int J Epidemiol. 1999;28(6):1102–1109. doi: 10.1093/ije/28.6.1102
- Tan LC, Methawasin K, Tan EK, et al. Dietary cholesterol, fats and risk of Parkinson’s disease in the Singapore Chinese Health Study. J Neurol Neurosurg Psychiatry. 2016;87(1):86–92. doi: 10.1136/jnnp-2014-310065
- Miyake Y, Sasaki S, Tanaka K, et al. Dietary fat intake and risk of Parkinson’s disease: a case‐control study in Japan. J Neurol Sci. 2010;288 (1-2):117–122. doi: 10.1016/j.jns.2009.09.021
- Zhang D, Jiang H, Xie J. Alcohol intake and risk of Parkinson’s disease: a meta‐analysis of observational studies. Mov Disord. 2014;29(6):819–822. doi: 10.1002/mds.25863
- Bettiol SS, Rose TC, Hughes CJ, Smith LA. Alcohol consumption and Parkinson’s disease risk: a review of recent findings. J Parkinsons Dis. 2015;5(3):425–442. doi: 10.3233/JPD-150533
- Eriksson AK, Lofving S, Callaghan RC, Allebeck P. Alcohol use disorders and risk of Parkinson’s disease: findings from a Swedish national cohort study 1972–2008. BMC Neurol. 2013;13:190. doi: 10.1186/1471-2377-13-190
- Jiang W, Ju C, Jiang H, Zhang D. Dairy foods intake and risk of Parkinson’s disease: a dose‐response meta‐analysis of prospective cohort studies. Eur J Epidemiol. 2014;29(9):613–619. doi: 10.1007/s10654-014-9921-4
- Choi HK, Atkinson K, Karlson EW, et al. Purine‐rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med. 2004;350(11):1093–1103. doi: 10.1056/NEJMoa035700
- Miyake Y, Tanaka K, Fukushima W, et al. Lack of association of dairy food, calcium, and vitamin D intake with the risk of Parkinson’s disease: a case‐control study in Japan. Parkinsonism Relat Disord. 2011;17(2):112–116. doi: 10.1016/j.parkreldis.2010.11.018
Supplementary files

