Патогенное и протективное действие средовых факторов при болезни Паркинсона: анализ эпидемиологических данных и молекулярных механизмов
- Авторы: Жукова Н.Г.1, Сайфитдинхужаев З.Ф.1, Нурматова Д.А.2, Жукова И.А.2, Охунбаев Ж.М.2, Масенко А.Я.1, Гапонова О.В.1
-
Учреждения:
- Сибирский государственный медицинский университет
- Городская детская клиническая больница № 1
- Выпуск: Том 19, № 4 (2025)
- Страницы: 75-82
- Раздел: Обзоры
- URL: https://ogarev-online.ru/2075-5473/article/view/380120
- DOI: https://doi.org/10.17816/ACEN.1275
- EDN: https://elibrary.ru/BYIZBT
- ID: 380120
Цитировать
Аннотация
Болезнь Паркинсона (БП) представляет собой мультисистемное нейродегенеративное заболевание, ключевым морфологическим признаком которого является прогрессирующая утрата дофаминергических нейронов в области чёрной субстанции среднего мозга. Среди нейродегенеративных заболеваний БП занимает 2-е место по распространённости, уступая лишь болезни Альцгеймера. По прогнозам эпидемиологических исследований, к 2030 г. общее количество пациентов с установленным диагнозом БП может достичь 8,7 млн человек во всём мире, что подчёркивает её значимость как одной из ведущих медико-социальных проблем современности. Прогрессирование заболевания характеризуется стойкой дезадаптацией пациентов во всех сферах жизни и, как следствие, к потере человеческих ресурсов. Около 85–90% случаев БП являются спорадическими и имеют мультифакториальную природу. Исследования последних лет определили генетические мутации, предрасполагающие к БП. Однако вопрос о вкладе средовых факторов в патогенез БП остаётся неясным.
Цель обзора — рассмотреть современные данные о патогенном и протективном действии средовых факторов на развитие и дальнейшее течение спорадических форм БП.
Нами проведён поиск полнотекстовых публикаций на русском и английском языках за последние 25 лет в базах данных eLIBRARY.RU, PubMed, Google Scholar, Web of Science с использованием ключевых слов и словосочетаний. В обзоре подробно рассмотрены болезнетворные и протективные средовые факторы в отношении БП, а также средовые факторы, значение которых остаётся неоднозначным.
Об авторах
Наталья Григорьевна Жукова
Сибирский государственный медицинский университет
Email: znatali@yandex.ru
ORCID iD: 0000-0001-6547-6622
д-р мед. наук, профессор, профессор каф. неврологии и нейрохирургии
Россия, ТомскЗайнутдинхужа Фазлиддинхужа угли Сайфитдинхужаев
Сибирский государственный медицинский университет
Автор, ответственный за переписку.
Email: sayfutdinxodjaev2002@gmail.com
ORCID iD: 0009-0007-2184-2708
лаборант-исследователь кафедральной научно-образовательной лаборатории когнитивной нейрофизиологии психосоматических отношений
Россия, ТомскДилором Абдусаламовна Нурматова
Городская детская клиническая больница № 1
Email: okhunbaev@gmail.com
ORCID iD: 0009-0002-2031-8940
канд. мед. наук, доцент, зав. отд. неврологии детей старшего возраста
Узбекистан, ТашкентИрина Александровна Жукова
Городская детская клиническая больница № 1
Email: zhukova.ia@ssmu.ru
ORCID iD: 0000-0001-5679-1698
канд. мед. наук, доцент, эксперт центра клинических исследований
Узбекистан, ТашкентЖахонгир Музаффар угли Охунбаев
Городская детская клиническая больница № 1
Email: okhunbaev@gmail.com
ORCID iD: 0009-0002-7312-7750
врач-невролог отд. неврологии детей старшего возраста
Узбекистан, ТашкентАлександра Ярославовна Масенко
Сибирский государственный медицинский университет
Email: masenkosasha@yandex.ru
ORCID iD: 0009-0003-4583-5407
аспирант каф. неврологии и нейрохирургии
Россия, ТомскОлеся Владимировна Гапонова
Сибирский государственный медицинский университет
Email: masenkosasha@yandex.ru
ORCID iD: 0009-0009-6061-0314
аспирант каф. неврологии и нейрохирургии
Россия, ТомскСписок литературы
- Таппахов А.А., Попова Т.Е., Николаева Т.Я. и др. Генетическая основа болезни Паркинсона. Неврология, нейропсихиатрия, психосоматика. 2017;9(1):96–100. Tappakhov AA, Popova TE, Nikolaeva TYa, et al. The genetic basis of Parkinson’s disease. Neurology, neuropsychiatry, psychosomatics. 2017;9(1):96–100. doi: 10.14412/2074-2711-2017-1-96-100
- Титова Н.В., Чаудури K.Р. Немоторные симптомы болезни Паркинсона: подводная часть айсберга. Анналы клинической и экспериментальной неврологии. 2017; 11(4): 5–18. Titova NV, Chauduri KR. Non-motor symptoms of Parkinson’s disease: the underwater part of the iceberg. Annals of Clinical and Experimental Neurology. 2017;11(4):5–18. doi: 10.18454/ACEN.2017.4.1
- Жукова Н.Г., Матвеева М.В., Казанцева П.Е. и др. Саркопения как немоторный симптом болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. 2024;124(9):15–22. Zhukova NG, Matveeva MV, Kazantseva PE, et al. Sarcopenia as a non-motor symptom of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(9):15–22. doi: 10.17116/jnevro202412409115
- Коломан И.И., Чимагомедова А.Ш. Влияние асимметрии моторных симптомов на когнитивные функции при болезни Паркинсона. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2020;120(10-2):74–79. Koloman II, Chimagomedova ASh. The impact of motor symptom asymmetry on cognitive function in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. Special issues. 2020;120(10-2):74–79. doi: 10.17116/jnevro202012010274
- Abbas MM, Xu Z, Tan LC. Epidemiology of Parkinson’s disease — East versus West. Mov Disord Clin Pract. 2017;5(1):14–28. doi: 10.1002/mdc3.12568
- Сайфитдинхужаев З.Ф., Жукова Н.Г., Насырова Р.Ф., Нурматова Д.А. Современные представления о патогенезе спорадических форм болезни Паркинсона. Патогенез. 2025;23(2): 4–13. Sayfitdinkhuzhaev ZF, Zhukova NG, Nasyrova RF, Nurmatova DA. Modern concepts of the pathogenesis of sporadic forms of Parkinson’s disease. Pathogenesis. 2025;23(2):4–13. doi: 10.48612/path/2310-0435.2025.02.4-13
- Corti O, Lesage S, Brice A. What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev. 2011;91(4):1161–1218. doi: 10.1152/physrev.00022.2010
- Lill CM, Roehr JT, McQueen MB, et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDgene database. PLoS Genet. 2012;8(3):e1002548. doi: 10.1371/journal.pgen.1002548
- Zavodszky E, Seaman MN, Moreau K, et al. Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat Commun. 2014;5:3828. doi: 10.1038/ncomms4828
- Pankratz N, Uniacke SK, Halter CA, et al. Genes influencing Parkinson disease onset: replication of PARK3 and identification of novel loci. Neurology. 2004;62(9):1616–1618. doi: 10.1212/01.wnl.0000123112.51368.10
- Kawamoto Y, Kobayashi Y, Suzuki Y, et al. Accumulation of HtrA2/Omi in neuronal and glial inclusions in brains with alpha-synucleinopathies. J Neuropathol Exp Neurol. 2008; 67(10):984–993. doi: 10.1097/NEN.0b013e31818809f4
- Ruiz-Martinez J, Krebs CE, Makarov V, et al. GIGYF2 mutation in late-onset Parkinson’s disease with cognitive impairment. J Hum Genet. 2015;60(10):637–640. doi: 10.1038/jhg.2015.69
- Silvera D, Arju R, Darvishian F, et al. Essential role for eIF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol. 2009;11(7):903–908. doi: 10.1038/ncb1900
- Kim JM, Lee JY, Kim HJ, et al. The LRRK2 G2385R variant is a risk factor for sporadic Parkinson’s disease in the Korean population. Parkinsonism Relat Disord. 2010;16(2):85–88. doi: 10.1016/j.parkreldis.2009.10.004
- Pugin A, Faundes V, Santa María L, et al. Clinical, molecular, and pharmacological aspects of FMR1 related disorders. Neurologia. 2017;32(4):241–252. doi: 10.1016/j.nrl.2014.10.009
- Wirdefeldt K, Adami HO, Cole P, et al. Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol. 2011;26(Suppl 1):1–58. doi: 10.1007/s10654-011-9581-6
- Meredith GE, Sonsalla PK, Chesselet MF. Animal models of Parkinson’s disease progression. Acta Neuropathol. 2008;115(4):385–398. doi: 10.1007/s00401-008-0350-x
- Gunnarsson LG, Bodin L. Parkinson’s disease and occupational exposures: a systematic literature review and meta-analyses. Scand J Work Environ Health. 2017;43(3):197–209. doi: 10.5271/sjweh.3641
- Narayan S, Liew Z, Paul K, et al. Household organophosphorus pesticide use and Parkinson’s disease. Int J Epidemiol. 2013;42(5):1476–1485. doi: 10.1093/ije/dyt170
- Wan N, Lin G. Parkinson’s disease and pesticides exposure: new findings from a comprehensive study in Nebraska, USA. J Rural Health. 2016;32(3):303–313. doi: 10.1111/jrh.12154
- Иллариошкин С.Н. Современные представления об этиологии болезни Паркинсона. Неврологический журнал. 2015;20(4):4–13. Illarioshkin SN. Modern ideas about the etiology of Parkinson’s disease. Neurological Journal. 2015;20(4):4–13.
- Kenborg L, Rugbjerg K, Lee PC, et al. Head injury and risk for Parkinson disease: results from a Danish case-control study. Neurology. 2015;84(11):1098–1103. doi: 10.1212/WNL.0000000000001362
- Li X, Li W, Liu G, et al. Association between cigarette smoking and Parkinson’s disease: a meta-analysis. Arch Gerontol Geriatr. 2015;61(3):510–516. doi: 10.1016/j.archger.2015.08.004
- Nielsen SS, Franklin GM, Longstreth WT, et al. Nicotine from edible Solanaceae and risk of Parkinson disease. Ann Neurol. 2013;74(3):472–477. doi: 10.1002/ana.23884
- Costa J, Lunet N, Santos C, et al. Caffeine exposure and the risk of Parkinson’s disease: a systematic review and meta-analysis of observational studies. J Alzheimers Dis. 2010;20(Suppl 1):221–238. doi: 10.3233/JAD-2010-091525
- Qi H, Li S. Dose-response meta-analysis on coffee, tea and caffeine consumption with risk of Parkinson’s disease. Geriatr Gerontol Int. 2014;14(2):430–439. doi: 10.1111/ggi.12123
- Tan LC, Koh WP, Yuan JM, et al. Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol. 2008;167(5):553–560. doi: 10.1093/aje/kwm338
- Gatto EM, Melcon C, Parisi VL, et al. Inverse association between yerba mate consumption and idiopathic Parkinson’s disease. A case-control study. J Neurol Sci. 2015;356(1-2):163–167. doi: 10.1016/j.jns.2015.06.043
- Yang F, Trolle Lagerros Y, Bellocco R, et al. Physical activity and risk of Parkinson’s disease in the Swedish National March Cohort. Brain. 2015;138(Pt 2):269–275. doi: 10.1093/brain/awu323
- Yang XL, Luo Q, Song HX, et al. Related factors and prevalence of Parkinson’s disease among Uygur residents in Hetian, Xinjiang Uygur Autonomous Region. Genet Mol Res. 2015;14(3):8539–8546. doi: 10.4238/2015.July.31.1
- Wang YL, Wang YT, Li JF, et al. Body mass index and risk of Parkinson’s disease: a dose‐response meta‐analysis of prospective studies. PLoS One. 2015;10(6):e0131778. doi: 10.1371/journal.pone.0131778
- van der Marck MA, Dicke HC, Uc EY, et al. Body mass index in Parkinson’s disease: a meta‐analysis. Parkinsonism Relat Disord 2012;18(3):263–267. doi: 10.1016/j.parkreldis.2011.10.016
- Noyce AJ, Kia DA, Hemani G, et al. Estimating the causal influence of body mass index on risk of Parkinson disease: a Mendelian randomisation study. PLoS Med. 2017;14(6):e1002314. doi: 10.1371/journal.pmed.1002314
- Schlesinger I, Schlesinger N. Uric acid in Parkinson’s disease. Mov Disord. 2008;23(12):1653–1657. doi: 10.1002/mds.22139
- Ames BN, Cathcart R, Schwiers E, Hochstein P. Uric acid provides an antioxidant defense in humans against oxidant‐ and radical‐caused aging and cancer: a hypothesis. Proc Natl Acad Sci USA. 1981;78(11):6858–6862. doi: 10.1073/pnas.78.11.6858
- Gao X, O’Reilly EJ, Schwarzschild MA, Ascherio A. Prospective study of plasma urate and risk of Parkinson disease in men and women. Neurology. 2016;86(6):520–526. doi: 10.1212/WNL.0000000000002351
- Shen C, Guo Y, Luo W, et al. Serum urate and the risk of Parkinson’s disease: results from a meta‐analysis. Can J Neurol Sci. 2013;40(1):73–79. doi: 10.1017/s0317167100012981
- Alonso A, Rodriguez LA, Logroscino G, Hernan MA. Gout and risk of Parkinson disease: a prospective study. Neurology. 2007;69(17):1696–1700. doi: 10.1212/01.wnl.0000279518.10072.df
- Wen M, Zhou B, Chen YH, et al. Serum uric acid levels in patients with Parkinson’s disease: a meta‐analysis. PLoS One. 2017;12(3):e0173731. doi: 10.1371/journal.pone.0173731
- Powers KM, Smith‐Weller T, Franklin GM, et al. Dietary fats, cholesterol and iron as risk factors for Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(1):47–52. doi: 10.1016/j.parkreldis.2008.03.002
- Johnson CC, Gorell JM, Rybicki BA, et al. Adult nutrient intake as a risk factor for Parkinson’s disease. Int J Epidemiol. 1999;28(6):1102–1109. doi: 10.1093/ije/28.6.1102
- Tan LC, Methawasin K, Tan EK, et al. Dietary cholesterol, fats and risk of Parkinson’s disease in the Singapore Chinese Health Study. J Neurol Neurosurg Psychiatry. 2016;87(1):86–92. doi: 10.1136/jnnp-2014-310065
- Miyake Y, Sasaki S, Tanaka K, et al. Dietary fat intake and risk of Parkinson’s disease: a case‐control study in Japan. J Neurol Sci. 2010;288 (1-2):117–122. doi: 10.1016/j.jns.2009.09.021
- Zhang D, Jiang H, Xie J. Alcohol intake and risk of Parkinson’s disease: a meta‐analysis of observational studies. Mov Disord. 2014;29(6):819–822. doi: 10.1002/mds.25863
- Bettiol SS, Rose TC, Hughes CJ, Smith LA. Alcohol consumption and Parkinson’s disease risk: a review of recent findings. J Parkinsons Dis. 2015;5(3):425–442. doi: 10.3233/JPD-150533
- Eriksson AK, Lofving S, Callaghan RC, Allebeck P. Alcohol use disorders and risk of Parkinson’s disease: findings from a Swedish national cohort study 1972–2008. BMC Neurol. 2013;13:190. doi: 10.1186/1471-2377-13-190
- Jiang W, Ju C, Jiang H, Zhang D. Dairy foods intake and risk of Parkinson’s disease: a dose‐response meta‐analysis of prospective cohort studies. Eur J Epidemiol. 2014;29(9):613–619. doi: 10.1007/s10654-014-9921-4
- Choi HK, Atkinson K, Karlson EW, et al. Purine‐rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med. 2004;350(11):1093–1103. doi: 10.1056/NEJMoa035700
- Miyake Y, Tanaka K, Fukushima W, et al. Lack of association of dairy food, calcium, and vitamin D intake with the risk of Parkinson’s disease: a case‐control study in Japan. Parkinsonism Relat Disord. 2011;17(2):112–116. doi: 10.1016/j.parkreldis.2010.11.018
Дополнительные файлы

