Comparative Analysis of Neurogenesis and Cerebral Angiogenesis in the Hippocampal Neurogenic Niche in Animals with Two Experimental Models of Alzheimer’s Disease
- Authors: Averchuk A.S.1, Kukla M.V.1, Rozanova N.A.1, Stavrovskaya A.V.1, Salmina A.B.1
-
Affiliations:
- Russian Center of Neurology and Neurosciences
- Issue: Vol 19, No 2 (2025)
- Pages: 41-51
- Section: Original articles
- URL: https://ogarev-online.ru/2075-5473/article/view/310262
- DOI: https://doi.org/10.17816/ACEN.1227
- EDN: https://elibrary.ru/IAUIYW
- ID: 310262
Cite item
Abstract
Introduction. Various animal models are employed to uncover the mechanisms of Alzheimer’s disease (AD) pathogenesis. Understanding brain damage pathogenesis in animal models of neurodegenerative diseases and identifying common patterns inherent to all relevant models is essential for adequate interpretation of findings, development of new models, as well as prevention and therapy strategies.
The study aimed to assess neurogenesis and remodeling of the microvasculature in the subgranular zone (SGZ) of the hippocampal dentate gyrus in mice with two AD models.
Materials and methods. The study employed two in vivo Alzheimer’s disease models: 1) animals with intrahippocampal administration of amyloid-β protein fragment Aβ25–35; 2) 5xFAD transgenic mice. Cognitive functions were evaluated using a passive avoidance test. On days 7 and 28 post-training, we assessed vascular network branching and density in the hippocampus using Evans Blue with subsequent software-based analysis of skeletonized images, analyzed proliferative activity of neuronal and endothelial cells, and their subpopulation composition using BrdU assay and multiparameter immunostaining of brain thin sections.
Results. Animals following intrahippocampal Aβ25 -35 administration demonstrated enhanced neurogenesis and neoangiogenesis over 28 days post-training, unlike 5xFAD mice which showed delayed and less pronounced proliferation of neuronal cells in the SGZ alongside transient increases in proliferating endothelial cells. Both AD models exhibited divergent changes in tip and stalk cell counts within the hippocampal SGZ, indicating non-productive neoangiogenesis confirmed by reduced vascular branching and density in the SGZ of animals from both models.
Conclusion. Cognitive deficits associated with experience-induced neurogenesis and cerebral angiogenesis mechanisms in the hippocampal neurogenic niche differ between AD models representing sporadic and familial variants, highlighting the need for fundamentally different approaches to pathogenetic therapy targeting non-productive angiogenesis and aberrant brain plasticity in various Alzheimer’s type neurodegeneration scenarios.
Full Text
##article.viewOnOriginalSite##About the authors
Anton S. Averchuk
Russian Center of Neurology and Neurosciences
Author for correspondence.
Email: antonaverchuk@yandex.ru
ORCID iD: 0000-0002-1284-6711
Cand. Sci. (Biol.), Associated Professor, senior researcher, Laboratory of neurobiology and tissue engineering, Brain Institute
Russian Federation, 5, per. Obukha, Moscow, 105064Maria V. Kukla
Russian Center of Neurology and Neurosciences
Email: antonaverchuk@yandex.ru
ORCID iD: 0000-0003-0700-4912
research assistant, Laboratory of neurobiology and tissue engineering, Brain Institute
Russian Federation, 5, per. Obukha, Moscow, 105064Natalia A. Rozanova
Russian Center of Neurology and Neurosciences
Email: antonaverchuk@yandex.ru
ORCID iD: 0000-0001-9619-4679
postgraduate student, research assistant, Laboratory of neurobiology and tissue engineering, Brain Institute
Russian Federation, 5, per. Obukha, Moscow, 105064Alla V. Stavrovskaya
Russian Center of Neurology and Neurosciences
Email: antonaverchuk@yandex.ru
ORCID iD: 0000-0002-8689-0934
Cand. Sci. (Biol.), leading researcher, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute
Russian Federation, 5, per. Obukha, Moscow, 105064Alla B. Salmina
Russian Center of Neurology and Neurosciences
Email: antonaverchuk@yandex.ru
ORCID iD: 0000-0003-4012-6348
D. Sci. (Med.), Prof., chief researcher, Head, Laboratory of neurobiology and tissue engineering, Brain Institute
Russian Federation, 5, per. Obukha, Moscow, 105064References
- Cramer SC, Sur M, Dobkin BH, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(Pt 6):1591–1609. doi: 10.1093/brain/awr039
- Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease — a therapeutic opportunity? Biochem Biophys Res Commun. 2017;483(4):998–1004. doi: 10.1016/j.bbrc.2016.09.053
- Akhtar A, Gupta SM, Dwivedi S, et al. Preclinical models for Alzheimer’s disease: past, present, and future approaches. ACS Omega. 2022;7(51):47504–47517. doi: 10.1021/acsomega.2c05609
- Yokoyama M, Kobayashi H, Tatsumi L, et al. Mouse models of Alzheimer’s disease. Front Mol Neurosci. 2022;15:912995. doi: 10.3389/fnmol.2022.912995
- Горина Я.В., Власова О.Л., Большакова А.В. и др. Болезнь Альцгеймера: поиск лучших экспериментальных моделей для расшифровки клеточно-молекулярных механизмов развития заболевания. Российский физиологический журнал им. И.М. Сеченова. 2023;109(1):18–33. Gorina YаV, Vlasova OL, Bolshakova AV, et al. Alzheimer’s disease: a search for the best experimental models for the decoding of the cellular and molecular mechanisms of the development of the disease. Russian Physiological Journal named after I.M. Sechenov. 2023;109(1):18–33. doi: 10.31857/S0869813923010065
- Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol Neurodegener. 2017;12(1):89. doi: 10.1186/s13024-017-0231-7
- Guzmán CB, Chaffey ET, Palpagama HT, et al. The Interplay between beta-amyloid 1-42 (Aβ1-42)-induced hippocampal inflammatory response, p-tau, vascular pathology, and their synergistic contributions to neuronal death and behavioral deficits. Front Mol Neurosci. 2020;13:522073. doi: 10.3389/fnmol.2020.552073
- Forner S, Kawauchi S, Balderrama-Gutierrez G, et al. Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer’s disease. Sci Data. 2021;8(1):270. doi: 10.1038/s41597-021-01054-y
- Babcock KR, Page JS, Fallon JR, et al. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Reports. 2021;16(4):681–693. doi: 10.1016/j.stemcr.2021.01.019
- Аверчук А.С., Рязанова М.В., Розанова Н.А. и др. Нейрогенез в нейрогенных нишах головного мозга при экспериментальной болезни Альцгеймера на досимптоматической стадии развития нейродегенерации. Цитология. 2023;65(4):339–347. Averchuk AS, Ryazanova MV, Rozanova NA, et al. Neurogenesis in brain neurogenic niches in experimental Alzheimer’s disease at the presymptomatic stage of neurodegeneration. Tsytologiya. 2023;65(4):339–347. doi: 10.31857/S004137712304003X
- Salmin VV, Komleva YK, Kuvacheva NV, et al. Differential roles of environmental enrichment in Alzheimer’s type of neurodegeneration and physiological aging. Front Aging Neurosci. 2017;9:245. doi: 10.3389/fnagi.2017.00245
- Komleva YK, Lopatina OL, Gorina YV, et al. Expression of nlrp3 inflammasomes in neurogenic niche contributes to the effect of spatial learning in physiological conditions but not in Alzheimer’s type neurodegeneration. Cell Mol Neurobiol. 2022;42(5):1355–1371. doi: 10.1007/s10571-020-01021-y
- Hollands C, Tobin MK, Hsu M, et al. Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer’s disease by compromising hippocampal inhibition. Mol Neurodegener. 2017;12(1):64. doi: 10.1186/s13024-017-0207-7
- Pan YW, Storm DR, Xia Z. Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 MAP kinase. Neurobiol Learn Mem. 2013;105:81–92. doi: 10.1016/j.nlm.2013.07.011
- Pozhilenkova EA, Lopatina OL, Komleva YK, et al. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci. 2017;28(4):397–415. doi: 10.1515/revneuro-2016-0071
- Karakatsani A, Álvarez-Vergara MI, Ruiz de Almodóvar C. The vasculature of neurogenic niches: properties and function. Cells Dev. 2023;174:203841. doi: 10.1016/j.cdev.2023.203841
- Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167(4):897–914. doi: 10.1016/j.cell.2016.10.021.021
- Fu S, Jiang W, Gao X, et al. Aberrant adult neurogenesis in the subventricular zone-rostral migratory stream-olfactory bulb system following subchronic manganese exposure. Toxicol Sci. 2016;150(2):347–368. doi: 10.1093/toxsci/kfw007
- Zeng A, Wang SR, He YX, et al. Progress in understanding of the stalk and tip cells formation involvement in angiogenesis mechanisms. Tissue Cell. 2021;73:101626. doi: 10.1016/j.tice.2021.101626
- Kania BF, Wrońska-Fortuna D, Zięba D. Introduction to neural plasticity mechanism. Journal of Behavioral and Brain Science. 2017;7(2):41–49. doi: 10.4236/jbbs.2017.72005
- Аверчук А.С., Рязанова М.В., Баранич Т.И. и др. Нейротоксическое действие бета-амилоида сопровождается изменением митохондриальной динамики и аутофагии нейронов и клеток церебрального эндотелия в экспериментальной модели болезни Альцгеймера. Бюллетень экспериментальной биологии и медицины. 2023;175(3):315–320. doi: 10.47056/0365-9615-2023-175-3-291-297. Averchuk AS, Ryazanova MV, Baranich TI, et al. The neurotoxic effect of β-amyloid is accompanied with changes in the mitochondrial dynamics and autophagy in neurons and brain endothelial cells in the experimental model of Alzheimer’s disease. Bull Exp Biol Med. 2023;175(3):315–320. doi: 10.1007/s10517-023-05859-2
- Lucassen PJ, Meerlo P, Naylor AS, et al. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol. 2020;20(1):1–17. doi: 10.1016/j.euroneuro.2009.08.003
- Salmina AB, Gorina YV, Komleva YK, et al. Early life stress and metabolic plasticity of brain cells: impact on neurogenesis and angiogenesis. Biomedicines. 2021;9(9):1092. doi: 10.3390/biomedicines9091092
- Wiesmann M, de Leeuw F-E. Vascular reserve in brain resilience: pipes or perfusion? Brain. 2020; 143(2):390–392. doi: 10.1093/brain/awz408
- Malinovskaya NA, Komleva YK, Salmin VV, et al. endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling. Front Physiol. 2016;7:599. doi: 10.3389/fphys.2016.00599
- Naito H, Iba T, Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. Int Immunol. 2020;32(5):295–305. doi: 10.1093/intimm/dxaa008
- Chen W, Xia P, Wang H, et al. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal. 2019;13(3):291–301. doi: 10.1007/s12079-019-00511-z
- Иптышев А.М., Горина Я.В., Лопатина О.Л. и др. Экспериментальные модели болезни Альцгеймера: преимущества и недостатки. Сибирское медицинское обозрение. 2016;(4):5–21. Iptyshev AM, Gorina YaV, Lopatina OL, et al. Experimental models of Alzheimer’s disease: advantages and disadvantages. Siberian Medical Review. 2016;(4):5–21.
- Рязанова М.В., Аверчук А.С., Ставровская А.В. и др. Особенности экспрессии Arc/Arg3.1 в ткани головного мозга при обучении животных с экспериментальной болезнью Альцгеймера. Анналы клинической и экспериментальной неврологии. 2023;17(3):49–56. Ryazanova MV, Averchuk AS, Stavrovskaya AV, et al. Arc/Arg3.1 expression in the brain tissues during the learning process in Alzheimer’s disease animal models. Annals of Clinical and Experimental Neurology. 2023;17(3):49–56. doi: 10.54101/ACEN.2023.3.6
- Rodríguez JJ, Verkhratsky A. Neurogenesis in Alzheimer’s disease. J Anat. 2011;219(1):78–89. doi: 10.1111/j.1469-7580.2011.01343.x
- Salta E, Lazarov O, Fitzsimons CP, et al. Adult hippocampal neurogenesis in Alzheimer’s disease: a roadmap to clinical relevance. Cell Stem Cell. 2023;30(2):120–136. doi: 10.1016/j.stem.2023.01.002
- Ermini FV, Grathwohl S, Radde R, et al. Neurogenesis and alterations of neural stem cells in mouse models of cerebral amyloidosis. Am J Pathol. 2008:172(6):1520–1528. doi: 10.2353/ajpath.2008.060520
- Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA. 2004;101(1):343–347. doi: 10.1073/pnas.2634794100
- Liu Y, Bilen M, McNicoll MM, et al. Early postnatal defects in neurogenesis in the 3xTg mouse model of Alzheimer’s disease. Cell Death Dis. 2023;14(2):138. doi: 10.1038/s41419-023-05650-1
- Kerr AL, Steuer EL, Pochtarev V, et al. Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience. 2010;171(1):214–226. doi: 10.1016/j.neuroscience.2010.08.008
- Hecht M, Krämer LM, von Arnim CAF, et al. Capillary cerebral amyloid angiopathy in Alzheimer’s disease: association with allocortical/hippocampal microinfarcts and cognitive decline. Acta Neuropathol. 2018;135(5):681–694. doi: 10.1007/s00401-018-1834-y
- Carrano A, Hoozemans JJ, van der Vies SM, et al. Neuroinflammation and blood-brain barrier changes in capillary amyloid angiopathy. Neurodegener Dis. 2012;10(1-4):329–331. doi: 10.1159/000334916
- Аверчук А.С., Рязанова М.В., Ставровская А.В. и др. Оценка ангиогенеза и ремоделирования микрососудов в субвентрикулярной зоне головного мозга мышей при экспериментальной болезни Альцгеймера. Казанский медицинский журнал. 2024;105(2):231–239. Averchuk AS, Ryazanova MV, Stavrovskaya AV, et al. Evaluation of angiogenesis and microvascular remodeling in the subventricular zone of the brain of mice with experimental Alzheimer’s disease. Kazan Medical Journal. 2024;105(2):231–239. doi: 10.17816/KMJ501749
- Averchuk AS, Ryazanova MV, Baranich TI, et al. The neurotoxic effect of β-amyloid is accompanied by changes in the mitochondrial dynamics and autophagy in neurons and brain endothelial cells in the experimental model of Alzheimer’s disease. Bulletin of Experimental Biology and Medicine. 2023;175(3):315–320. doi: 10.1007/s10517-023-05859-2
- Кукла М.В., Аверчук А.С., Ставровская А.В. и др. Изменение экспрессии VEGFR1 и VEGFR2 и зрелости клеток эндотелия у экспериментальных животных с моделью болезни Альцгеймера. Бюллетень сибирской медицины. 2024;23(4):47–54. Kukla M.V., Averchuk A.S., Stavrovskaya A.V. et al. Changes in VEGFR1 and VEGFR2 expression and endothelial cell maturity in laboratory animals with a model of Alzheimer’s disease. Bulletin of Siberian Medicine. 2024;23(4):47–54. doi: 10.20538/1682-0363-2024-4-47-54
- Баранич Т.И., Аверчук А.С., Кукла М.В. и др. Субпопуляционные изменения клеток эндотелия сосудов коры головного мозга при экспериментальной болезни Альцгеймера. Бюллетень экспериментальной биологии и медицины. 2024;178(9):365–370. Baranich TI, Averchuk AS, Kukla MV, et al. Subpopulation alterations in endothelial cells of cerebral cortex vessels in the experimental model of Alzheimer’s disease. Bulletin of Experimental Biology and Medicine. 2024;178(9):365–370. doi: 10.47056/0365-9615-2024-178-9-365-370
- Горина Я.В., Осипова Е.Д., Моргун А.В. и др. Аберрантный ангиогенез в ткани головного мозга при экспериментальной болезни Альцгеймера. Бюллетень сибирской медицины. 2020;19(4):46–52. Gorina YaV, Komleva YuK, Osipova ED, et al. Aberrant angiogenesis in brain tissue in experimental Alzheimer’s disease. Bulletin of Siberian Medicine. 2020;19(4):46–52. doi: 10.20538/1682-0363-2020-4-46-52
- Biron KE, Dickstein DL, Gopaul R, et al. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 2011;6(8):e23789. doi: 10.1371/journal.pone.0023789
- Georgieva I, Tchekalarova J, Iliev D, et al. Endothelial senescence and its impact on angiogenesis in Alzheimer’s disease. Int J Mol Sci. 2023;24(14):11344. doi: 10.3390/ijms241411344
Supplementary files
