Сравнительный анализ нейрогенеза и церебрального ангиогенеза в нейрогенной нише гиппокампа у животных с двумя моделями экспериментальной болезни Альцгеймера
- Авторы: Аверчук А.С.1, Кукла М.В.1, Розанова Н.А.1, Ставровская А.В.1, Салмина А.Б.1
-
Учреждения:
- Российский центр неврологии и нейронаук
- Выпуск: Том 19, № 2 (2025)
- Страницы: 41-51
- Раздел: Оригинальные статьи
- URL: https://ogarev-online.ru/2075-5473/article/view/310262
- DOI: https://doi.org/10.17816/ACEN.1227
- EDN: https://elibrary.ru/IAUIYW
- ID: 310262
Цитировать
Аннотация
Введение. Механизмы развития болезни Альцгеймера (БА) изучают с использованием разнообразных моделей на животных. Понимание особенностей патогенеза повреждения мозга у животных с разными моделями нейродегенерации и выявление общих закономерностей, присущих всем релевантным моделям, важно для корректной интерпретации полученных данных, разработки новых моделей и способов профилактики и терапии.
Цель исследования — оценить изменения нейрогенеза и ремоделирования микрососудов в субгранулярной зоне (СГЗ) гиппокампа головного мозга мышей с двумя моделями БА.
Материалы и методы. Для исследования были использованы две модели БА in vivo: 1) животные с интрагиппокампальным введением фрагмента β-амилоидного белка Aβ25–35; 2) животные линии 5xFAD. Когнитивные функции оценивали с помощью теста условной реакции пассивного избегания. На 7-е и 28-е сутки после обучения выполняли оценку ветвления и плотности сосудистой сети в гиппокампе с помощью Evans Blue с последующим программным анализом скелетированных изображений, анализ пролиферативной активности нейрональных клеток, эндотелиальных клеток и их субпопуляционного состава — с помощью теста с BrdU и мультипараметрического иммуноокрашивания тонких срезов мозга.
Результаты. Животные после интрагиппокампального введения Aβ25–35 демонстрировали усиленный нейрогенез и неоангиогенез в течение 28 сут после обучения, в отличие от животных с 5xFAD, у которых пролиферация клеток нейрональной природы в СГЗ носила замедленный и менее выраженный характер на фоне транзиторного увеличения количества пролиферирующих клеток эндотелия. У животных с разными моделями БА изменения количества tip- и stalk-клеток в СГЗ гиппокампа были разнонаправленными, что свидетельствует о несовершенном неоангиогенезе, подтверждаемом снижением ветвления и плотности сосудистой сети в СГЗ животных с обеими моделями БА.
Заключение. Формирование когнитивного дефицита на фоне различных по механизмам развития опыт-индуцированного нейрогенеза и церебрального ангиогенеза в нейрогенной нише гиппокампа у животных с моделями БА, характерными для спорадических и семейных вариантов, демонстрирует необходимость в разработке принципиально разных подходов к патогенетической терапии непродуктивного ангиогенеза и аберрантной пластичности мозга при разных вариантах развития нейродегенерации альцгеймеровского типа.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Антон Сергеевич Аверчук
Российский центр неврологии и нейронаук
Автор, ответственный за переписку.
Email: antonaverchuk@yandex.ru
ORCID iD: 0000-0002-1284-6711
канд. биол. наук, доцент, с. н. с. лаб. нейробиологии и тканевой инженерии Института мозга
Россия, 105064, Москва, пер. Обуха, д. 5, стр. 2Мария Владимировна Кукла
Российский центр неврологии и нейронаук
Email: antonaverchuk@yandex.ru
ORCID iD: 0000-0003-0700-4912
лаборант-исследователь лаб. нейробиологии и тканевой инженерии Института мозга
Россия, 105064, Москва, пер. Обуха, д. 5, стр. 2Наталья Александровна Розанова
Российский центр неврологии и нейронаук
Email: antonaverchuk@yandex.ru
ORCID iD: 0000-0001-9619-4679
лаборант-исследователь, аспирант лаб. нейробиологии и тканевой инженерии Института мозга
Россия, 105064, Москва, пер. Обуха, д. 5, стр. 2Алла Вадимовна Ставровская
Российский центр неврологии и нейронаук
Email: antonaverchuk@yandex.ru
ORCID iD: 0000-0002-8689-0934
канд. биол. наук, ведущий научный сотрудник лаборатории экспериментальной патологии нервной системы и нейрофармакологии Института мозга
Россия, 105064, Москва, пер. Обуха, д. 5, стр. 2Алла Борисовна Салмина
Российский центр неврологии и нейронаук
Email: antonaverchuk@yandex.ru
ORCID iD: 0000-0003-4012-6348
доктор медицинских наук, профессор, главный научный сотрудник, зав. лаб. нейробиологии и тканевой инженерии Института мозга
Россия, 105064, Москва, пер. Обуха, д. 5, стр. 2Список литературы
- Cramer SC, Sur M, Dobkin BH, et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(Pt 6):1591–1609. doi: 10.1093/brain/awr039
- Popugaeva E, Pchitskaya E, Bezprozvanny I. Dysregulation of neuronal calcium homeostasis in Alzheimer’s disease — a therapeutic opportunity? Biochem Biophys Res Commun. 2017;483(4):998–1004. doi: 10.1016/j.bbrc.2016.09.053
- Akhtar A, Gupta SM, Dwivedi S, et al. Preclinical models for Alzheimer’s disease: past, present, and future approaches. ACS Omega. 2022;7(51):47504–47517. doi: 10.1021/acsomega.2c05609
- Yokoyama M, Kobayashi H, Tatsumi L, et al. Mouse models of Alzheimer’s disease. Front Mol Neurosci. 2022;15:912995. doi: 10.3389/fnmol.2022.912995
- Горина Я.В., Власова О.Л., Большакова А.В. и др. Болезнь Альцгеймера: поиск лучших экспериментальных моделей для расшифровки клеточно-молекулярных механизмов развития заболевания. Российский физиологический журнал им. И.М. Сеченова. 2023;109(1):18–33. Gorina YаV, Vlasova OL, Bolshakova AV, et al. Alzheimer’s disease: a search for the best experimental models for the decoding of the cellular and molecular mechanisms of the development of the disease. Russian Physiological Journal named after I.M. Sechenov. 2023;109(1):18–33. doi: 10.31857/S0869813923010065
- Jankowsky JL, Zheng H. Practical considerations for choosing a mouse model of Alzheimer’s disease. Mol Neurodegener. 2017;12(1):89. doi: 10.1186/s13024-017-0231-7
- Guzmán CB, Chaffey ET, Palpagama HT, et al. The Interplay between beta-amyloid 1-42 (Aβ1-42)-induced hippocampal inflammatory response, p-tau, vascular pathology, and their synergistic contributions to neuronal death and behavioral deficits. Front Mol Neurosci. 2020;13:522073. doi: 10.3389/fnmol.2020.552073
- Forner S, Kawauchi S, Balderrama-Gutierrez G, et al. Systematic phenotyping and characterization of the 5xFAD mouse model of Alzheimer’s disease. Sci Data. 2021;8(1):270. doi: 10.1038/s41597-021-01054-y
- Babcock KR, Page JS, Fallon JR, et al. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Reports. 2021;16(4):681–693. doi: 10.1016/j.stemcr.2021.01.019
- Аверчук А.С., Рязанова М.В., Розанова Н.А. и др. Нейрогенез в нейрогенных нишах головного мозга при экспериментальной болезни Альцгеймера на досимптоматической стадии развития нейродегенерации. Цитология. 2023;65(4):339–347. Averchuk AS, Ryazanova MV, Rozanova NA, et al. Neurogenesis in brain neurogenic niches in experimental Alzheimer’s disease at the presymptomatic stage of neurodegeneration. Tsytologiya. 2023;65(4):339–347. doi: 10.31857/S004137712304003X
- Salmin VV, Komleva YK, Kuvacheva NV, et al. Differential roles of environmental enrichment in Alzheimer’s type of neurodegeneration and physiological aging. Front Aging Neurosci. 2017;9:245. doi: 10.3389/fnagi.2017.00245
- Komleva YK, Lopatina OL, Gorina YV, et al. Expression of nlrp3 inflammasomes in neurogenic niche contributes to the effect of spatial learning in physiological conditions but not in Alzheimer’s type neurodegeneration. Cell Mol Neurobiol. 2022;42(5):1355–1371. doi: 10.1007/s10571-020-01021-y
- Hollands C, Tobin MK, Hsu M, et al. Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer’s disease by compromising hippocampal inhibition. Mol Neurodegener. 2017;12(1):64. doi: 10.1186/s13024-017-0207-7
- Pan YW, Storm DR, Xia Z. Role of adult neurogenesis in hippocampus-dependent memory, contextual fear extinction and remote contextual memory: new insights from ERK5 MAP kinase. Neurobiol Learn Mem. 2013;105:81–92. doi: 10.1016/j.nlm.2013.07.011
- Pozhilenkova EA, Lopatina OL, Komleva YK, et al. Blood-brain barrier-supported neurogenesis in healthy and diseased brain. Rev Neurosci. 2017;28(4):397–415. doi: 10.1515/revneuro-2016-0071
- Karakatsani A, Álvarez-Vergara MI, Ruiz de Almodóvar C. The vasculature of neurogenic niches: properties and function. Cells Dev. 2023;174:203841. doi: 10.1016/j.cdev.2023.203841
- Gonçalves JT, Schafer ST, Gage FH. Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell. 2016;167(4):897–914. doi: 10.1016/j.cell.2016.10.021.021
- Fu S, Jiang W, Gao X, et al. Aberrant adult neurogenesis in the subventricular zone-rostral migratory stream-olfactory bulb system following subchronic manganese exposure. Toxicol Sci. 2016;150(2):347–368. doi: 10.1093/toxsci/kfw007
- Zeng A, Wang SR, He YX, et al. Progress in understanding of the stalk and tip cells formation involvement in angiogenesis mechanisms. Tissue Cell. 2021;73:101626. doi: 10.1016/j.tice.2021.101626
- Kania BF, Wrońska-Fortuna D, Zięba D. Introduction to neural plasticity mechanism. Journal of Behavioral and Brain Science. 2017;7(2):41–49. doi: 10.4236/jbbs.2017.72005
- Аверчук А.С., Рязанова М.В., Баранич Т.И. и др. Нейротоксическое действие бета-амилоида сопровождается изменением митохондриальной динамики и аутофагии нейронов и клеток церебрального эндотелия в экспериментальной модели болезни Альцгеймера. Бюллетень экспериментальной биологии и медицины. 2023;175(3):315–320. doi: 10.47056/0365-9615-2023-175-3-291-297. Averchuk AS, Ryazanova MV, Baranich TI, et al. The neurotoxic effect of β-amyloid is accompanied with changes in the mitochondrial dynamics and autophagy in neurons and brain endothelial cells in the experimental model of Alzheimer’s disease. Bull Exp Biol Med. 2023;175(3):315–320. doi: 10.1007/s10517-023-05859-2
- Lucassen PJ, Meerlo P, Naylor AS, et al. Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: implications for depression and antidepressant action. Eur Neuropsychopharmacol. 2020;20(1):1–17. doi: 10.1016/j.euroneuro.2009.08.003
- Salmina AB, Gorina YV, Komleva YK, et al. Early life stress and metabolic plasticity of brain cells: impact on neurogenesis and angiogenesis. Biomedicines. 2021;9(9):1092. doi: 10.3390/biomedicines9091092
- Wiesmann M, de Leeuw F-E. Vascular reserve in brain resilience: pipes or perfusion? Brain. 2020; 143(2):390–392. doi: 10.1093/brain/awz408
- Malinovskaya NA, Komleva YK, Salmin VV, et al. endothelial progenitor cells physiology and metabolic plasticity in brain angiogenesis and blood-brain barrier modeling. Front Physiol. 2016;7:599. doi: 10.3389/fphys.2016.00599
- Naito H, Iba T, Takakura N. Mechanisms of new blood-vessel formation and proliferative heterogeneity of endothelial cells. Int Immunol. 2020;32(5):295–305. doi: 10.1093/intimm/dxaa008
- Chen W, Xia P, Wang H, et al. The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal. 2019;13(3):291–301. doi: 10.1007/s12079-019-00511-z
- Иптышев А.М., Горина Я.В., Лопатина О.Л. и др. Экспериментальные модели болезни Альцгеймера: преимущества и недостатки. Сибирское медицинское обозрение. 2016;(4):5–21. Iptyshev AM, Gorina YaV, Lopatina OL, et al. Experimental models of Alzheimer’s disease: advantages and disadvantages. Siberian Medical Review. 2016;(4):5–21.
- Рязанова М.В., Аверчук А.С., Ставровская А.В. и др. Особенности экспрессии Arc/Arg3.1 в ткани головного мозга при обучении животных с экспериментальной болезнью Альцгеймера. Анналы клинической и экспериментальной неврологии. 2023;17(3):49–56. Ryazanova MV, Averchuk AS, Stavrovskaya AV, et al. Arc/Arg3.1 expression in the brain tissues during the learning process in Alzheimer’s disease animal models. Annals of Clinical and Experimental Neurology. 2023;17(3):49–56. doi: 10.54101/ACEN.2023.3.6
- Rodríguez JJ, Verkhratsky A. Neurogenesis in Alzheimer’s disease. J Anat. 2011;219(1):78–89. doi: 10.1111/j.1469-7580.2011.01343.x
- Salta E, Lazarov O, Fitzsimons CP, et al. Adult hippocampal neurogenesis in Alzheimer’s disease: a roadmap to clinical relevance. Cell Stem Cell. 2023;30(2):120–136. doi: 10.1016/j.stem.2023.01.002
- Ermini FV, Grathwohl S, Radde R, et al. Neurogenesis and alterations of neural stem cells in mouse models of cerebral amyloidosis. Am J Pathol. 2008:172(6):1520–1528. doi: 10.2353/ajpath.2008.060520
- Jin K, Peel AL, Mao XO, et al. Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci USA. 2004;101(1):343–347. doi: 10.1073/pnas.2634794100
- Liu Y, Bilen M, McNicoll MM, et al. Early postnatal defects in neurogenesis in the 3xTg mouse model of Alzheimer’s disease. Cell Death Dis. 2023;14(2):138. doi: 10.1038/s41419-023-05650-1
- Kerr AL, Steuer EL, Pochtarev V, et al. Angiogenesis but not neurogenesis is critical for normal learning and memory acquisition. Neuroscience. 2010;171(1):214–226. doi: 10.1016/j.neuroscience.2010.08.008
- Hecht M, Krämer LM, von Arnim CAF, et al. Capillary cerebral amyloid angiopathy in Alzheimer’s disease: association with allocortical/hippocampal microinfarcts and cognitive decline. Acta Neuropathol. 2018;135(5):681–694. doi: 10.1007/s00401-018-1834-y
- Carrano A, Hoozemans JJ, van der Vies SM, et al. Neuroinflammation and blood-brain barrier changes in capillary amyloid angiopathy. Neurodegener Dis. 2012;10(1-4):329–331. doi: 10.1159/000334916
- Аверчук А.С., Рязанова М.В., Ставровская А.В. и др. Оценка ангиогенеза и ремоделирования микрососудов в субвентрикулярной зоне головного мозга мышей при экспериментальной болезни Альцгеймера. Казанский медицинский журнал. 2024;105(2):231–239. Averchuk AS, Ryazanova MV, Stavrovskaya AV, et al. Evaluation of angiogenesis and microvascular remodeling in the subventricular zone of the brain of mice with experimental Alzheimer’s disease. Kazan Medical Journal. 2024;105(2):231–239. doi: 10.17816/KMJ501749
- Averchuk AS, Ryazanova MV, Baranich TI, et al. The neurotoxic effect of β-amyloid is accompanied by changes in the mitochondrial dynamics and autophagy in neurons and brain endothelial cells in the experimental model of Alzheimer’s disease. Bulletin of Experimental Biology and Medicine. 2023;175(3):315–320. doi: 10.1007/s10517-023-05859-2
- Кукла М.В., Аверчук А.С., Ставровская А.В. и др. Изменение экспрессии VEGFR1 и VEGFR2 и зрелости клеток эндотелия у экспериментальных животных с моделью болезни Альцгеймера. Бюллетень сибирской медицины. 2024;23(4):47–54. Kukla M.V., Averchuk A.S., Stavrovskaya A.V. et al. Changes in VEGFR1 and VEGFR2 expression and endothelial cell maturity in laboratory animals with a model of Alzheimer’s disease. Bulletin of Siberian Medicine. 2024;23(4):47–54. doi: 10.20538/1682-0363-2024-4-47-54
- Баранич Т.И., Аверчук А.С., Кукла М.В. и др. Субпопуляционные изменения клеток эндотелия сосудов коры головного мозга при экспериментальной болезни Альцгеймера. Бюллетень экспериментальной биологии и медицины. 2024;178(9):365–370. Baranich TI, Averchuk AS, Kukla MV, et al. Subpopulation alterations in endothelial cells of cerebral cortex vessels in the experimental model of Alzheimer’s disease. Bulletin of Experimental Biology and Medicine. 2024;178(9):365–370. doi: 10.47056/0365-9615-2024-178-9-365-370
- Горина Я.В., Осипова Е.Д., Моргун А.В. и др. Аберрантный ангиогенез в ткани головного мозга при экспериментальной болезни Альцгеймера. Бюллетень сибирской медицины. 2020;19(4):46–52. Gorina YaV, Komleva YuK, Osipova ED, et al. Aberrant angiogenesis in brain tissue in experimental Alzheimer’s disease. Bulletin of Siberian Medicine. 2020;19(4):46–52. doi: 10.20538/1682-0363-2020-4-46-52
- Biron KE, Dickstein DL, Gopaul R, et al. Amyloid triggers extensive cerebral angiogenesis causing blood brain barrier permeability and hypervascularity in Alzheimer’s disease. PLoS One. 2011;6(8):e23789. doi: 10.1371/journal.pone.0023789
- Georgieva I, Tchekalarova J, Iliev D, et al. Endothelial senescence and its impact on angiogenesis in Alzheimer’s disease. Int J Mol Sci. 2023;24(14):11344. doi: 10.3390/ijms241411344
Дополнительные файлы
