Amyotrophic Lateral Sclerosis and Myasthenia Gravis: Comorbidities and Differential Diagnosis

Cover Page

Cite item

Abstract

Amyotrophic lateral sclerosis (ALS) and myasthenia gravis (MG) are both characterized by primarily motor deficit, and their differential diagnosis may be sometimes challenging. We present a case report of a patient with late-onset ALS, which was initially misdiagnosed for anti-acetylcholine (anti-AChR) antibody-positive MG. In some cases, ALS has been thought to be triggered by MG. In the presented case report, elevated anti-AChR antibody titers (positive anti-AchR Ab) had no clinical significance and possibly indicated an immune response to structural changes in the postsynaptic membrane of the neuromuscular synapse in the ALS patient.

About the authors

Ekaterina V. Pervushina

Bashkir State Medical University

Email: mansur.kutlubaev@yahoo.com
ORCID iD: 0000-0002-9352-5783

Cand. Sci. (Med.), Assistant Professor, Department of neurology

Russian Federation, Ufa

Mansur A. Kutlubaev

Bashkir State Medical University

Author for correspondence.
Email: mansur.kutlubaev@yahoo.com
ORCID iD: 0000-0003-1001-2024

Dr. Sci. (Med.), Head, Department of neurology

Russian Federation, Ufa

Rim V. Magzhanov

Bashkir State Medical University

Email: mansur.kutlubaev@yahoo.com
ORCID iD: 0000-0003-1246-4833

Dr. Sci. (Med.), Professor, Department of neurology

Russian Federation, Ufa

Maksim V. Brazhnikov

Republican Clinical Hospital named after G.G. Kuvatov

Email: mansur.kutlubaev@yahoo.com
ORCID iD: 0009-0008-5959-388X

neurologist

Russian Federation, Ufa

Svetlana M. Farrakhova

Republican Clinical Hospital named after G.G. Kuvatov

Email: mansur.kutlubaev@yahoo.com
ORCID iD: 0009-0007-3890-264X

neurologist

Russian Federation, Ufa

References

  1. Rodolico C., Bonanno C., Toscano A. et al. MuSK-associated myasthenia gravis: clinical features and management. Front. Neurol. 2020;11:660. doi: 10.3389/fneur.2020.00660
  2. De Pasqua S., Cavallieri F., D'Angelo R. et al. Amyotrophic lateral sclerosis and myasthenia gravis: association or chance occurrence? Neurol. Sci. 2017;38(3):441–444. doi: 10.1007/s10072-016-2787-3
  3. Tiemessen M.M., Jagger A.L, Evans H.G. et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl. Acad. Sci. U S A. 2007;104(49):19446–19451. doi: 10.1073/pnas.0706832104
  4. Berrih-Aknin S., Le Panse R. Myasthenia gravis: a comprehensive review of immune dysregulation and etiological mechanisms. J. Autoimmun. 2014;52:90–100. doi: 10.1016/j.jaut.2013.12.011
  5. Zhao W., Xie W., Xiao Q. et al. Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia. J. Neurochem. 2006;99(4):1176–1187. doi: 10.1111/j.1471-4159.2006.04172.x
  6. Beers D.R., Henkel J.S., Zhao W. et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain. 2011;134(Pt 5):1293–1314. doi: 10.1093/brain/awr074
  7. Fischer L.R., Culver D.G., Tennant P. et al. Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp. Neurol. 2004;185(2):232–240. doi: 10.1016/j.expneurol.2003.10.004
  8. Zhang D., Zhao Y., Yan C. et al. CMAP decrement by low-frequency repetitive nerve stimulation in different hand muscles of ALS patients. Neurol. Sci. 2019; 40(12):2609–2615. doi: 10.1007/s10072-019-04027-7
  9. Щербакова Н.И., Касаткина Л.Ф., Гуркина Г.Т и др. Развитие бокового амиотрофического склероза у больного с миастенией: случайное сочетание или патогенетически взаимосвязанные состояния? Неврологический журнал. 2013;18(6):9–16. Shcherbakova N.I., Kasatkina L.F., Gurkina G.T. et al. An unusual сase of amyotrophic lateral sclerosis in а patient with myasthenia gravis: random combination or pathogenesis related conditions? Nevrologicheskii zhurnal. 2013;18(6):9–16.
  10. Verma S., Khurana S., Vats A. et al. Neuromuscular junction dysfunction in amyotrophic lateral sclerosis. Mol. Neurobiol. 2022;59(3):1502–1527. doi: 10.1007/s12035-021-02658-6
  11. Yang Z., He L., Ren M. et al. Paraneoplastic amyotrophic lateral sclerosis: case series and literature review. Brain Sci. 2022;12(8):1053. doi: 10.3390/brainsci12081053
  12. Mehanna R., Patton E.L. Jr., Phan C.L. et al. Amyotrophic lateral sclerosis with positive anti-acetylcholine receptor antibodies. Case report and review of the literature. J. Clin. Neuromuscul. Dis. 2012;14(2):82–85. doi: 10.1097/CND.0b013e31824db163
  13. Ashizawa T. False positive anti-acetylcholine receptor antibodies in motorneurone disease. Lancet. 1986;1(8492):1272. doi: 10.1016/s0140-6736(86)91408-x
  14. Longinetti E., Sveinsson O., Press R. et al. ALS patients with concurrent neuroinflammatory disorders; a nationwide clinical records study. Amyotroph. Lateral Scler. Frontotemporal. Degener. 2022;23(3–4):209–219. doi: 10.1080/21678421.2021.1946084
  15. Ковражкина Е.А., Сердюк А.В., Разинская О.Д. и др. Миастенический синдром у пациента с терминальной стадией бокового амиотрофического склероза. Журнал неврологии и психиатрии им. С.С. Корсакова. 2023;123(7):102–107. Kovrazhkina E.A., Serdyuk A.V., Razinskaya O.D. et al. Myasthenic syndrome in a patient with end-stage amyotrophic lateral sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(7):102–107. doi: 10.17116/jnevro2023123071102
  16. Tai H., Cui L., Guan Y. et al. Amyotrophic lateral sclerosis and myasthenia gravis overlap syndrome: a review of two cases and the associated literature. Front. Neurol. 2017;8:218. doi: 10.3389/fneur.2017.00218
  17. Санадзе А.Г., Касаткина Л.Ф. Два случая трансформации миастении в боковой амиотрофический склероз. Нервно-мышечные болезни. 2012;(4):53–58. Sanadze A.G., Kasatkina L.F. Two cases transformation myasthenia gravis to amyotrophic lateral sclerosis. Neuromuscular Diseases. 2012;(4):53–58. doi: 10.17650/2222-8721-2012-0-4-53-58

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electromyogram of the patient N.

Download (120KB)
3. Fig. 3. Periventricular hyperintensity of vascular origin on T2 (A) and FLAIR (B) MRI scans of the patient's brain.

Download (133KB)
4. Fig. 2. Needle electromyogram of patient N. А — m. deltoideus dextra, average duration 13.3 ms (8.9–16.3 ms, ref. values < 12 ms), average amplitude 1408 µV (459–2164 µV, ref. values < 550 µV), spontaneous activity (single fibrillation and fasciculation potentials); B — m. interosseous I dextra, average duration 14 ms (9.9–17.8 ms, ref. values < 10.3 ms), average amplitude 4863 µV (2125–8427 µV, ref. values < 750 µV), and moderate spontaneous activity (fasciculation potentials).

Download (101KB)

Copyright (c) 2024 Pervushina E.V., Kutlubaev M.A., Magzhanov R.V., Brazhnikov M.V., Farrakhova S.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).