Complication of COVID-19: Mild Encephalopathy Syndrome with Reversible Splenial Lesion
- Authors: Matveeva T.V.1, Gaifutdinov R.T.1, Kamalova D.S.1, Fasakhova G.A.2
-
Affiliations:
- Kazan State Medical University
- Central City Clinical Hospital No. 18
- Issue: Vol 18, No 4 (2024)
- Pages: 110-116
- Section: Clinical analysis
- URL: https://ogarev-online.ru/2075-5473/article/view/282509
- DOI: https://doi.org/10.17816/ACEN.983
- ID: 282509
Cite item
Abstract
A syndrome of mild encephalopathy with reversible splenial lesion (MERS) was described in a post-COVID-19 male patient. The clinical manifestations included neuropsychiatric and visual abnormalities; when focusing separately on an object (one eye closed), the left eye perceived it as normal, but the right eye perceived it as multiple images moving diagonally into the distance. T2, FLAIR, and ADC magnetic resonance imaging (MRI) showed a splenial lesion that resolved rapidly without using corticosteroids. The patient was diagnosed with cerebral polyopia because he saw images arranged in ordered rows after focusing on an object. Differential diagnoses included astigmatism, palinopsia, and polyopic visual hallucinations. Monocular polyopia is explained by anomia associated with the patient's partial split-brain syndrome (the splenial lesion, neuropsychiatric abnormalities); involvement of the pathways from the frontal eye fields to the brainstem structures responsible for initiating extraocular eye movements. The association of neurological complications with prior COVID-19, rapid resolution of symptoms, and MRI lesions without initiating immunosuppressive therapy suggested endotheliopathy as the cause of COVID-19 complications.
Full Text
##article.viewOnOriginalSite##About the authors
Tatiana V. Matveeva
Kazan State Medical University
Email: gaifutdinov69@mail.ru
ORCID iD: 0000-0002-1889-0094
Dr. Sci. (Med.), Prof., Department of neurology, neurosurgery and medical genetics
Russian Federation, KazanRustem T. Gaifutdinov
Kazan State Medical University
Author for correspondence.
Email: gaifutdinov69@mail.ru
ORCID iD: 0000-0001-5591-7148
Cand. Sci. (Med.), Associate Professor, Department of neurology, neurosurgery and medical genetics
Russian Federation, KazanDinara S. Kamalova
Kazan State Medical University
Email: gaifutdinov69@mail.ru
ORCID iD: 0000-0002-3123-9546
neurologist, Central City Clinical Hospital No. 18
Russian Federation, KazanGulnaz A. Fasakhova
Central City Clinical Hospital No. 18
Email: gaifutdinov69@mail.ru
ORCID iD: 0009-0004-4843-6767
Head, Neurology department
Russian Federation, KazanReferences
- Белопасов В.В., Яшу Я., Самойлова Е.М., Баклаушев В.П. Поражение нервной системы при СOVID-19. Клиническая практика. 2020;11(2):60–80. Belopasov V.V., Yashu Ya.A., Samojlova E.M., Baklaushev V.P. Damage to the nervous system in COVID-19. Clinical practice. 2020;11(2):60–80. doi: 10.17816/clinpract34851
- Громова О.А., Торшин И.Ю., Семенов В.А. и др. О прямых и косвенных неврологических проявлениях CОVID-19. Журнал невропатологии и психиатрии им. С.С. Корсакова. 2020;120(11):11–21. Gromova O.A., Torshin I.Yu., Semenov V.A. et al. On the direct and indirect neurological manifestations of COVID-19. Journal of Neuropathology and Psychiatry named after S.S. Korsakov. 2020;120(11):11–21. doi: 10.17116/jnevro 202012011111
- Mao L., Jin H., Wang M. et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):683–690. doi: 10.1001/jamaneurol.2020.1127
- Stafstrom C.E., Jantzie L.L. COVID-19: neurological considerations in neonates and children. Children (Basel). 2020;7(9):133. doi: 10.3390/children7090133
- Suri V., Pandy S., Sing J., Jena F. Acute onset chronic inflammatony demyelinating polyneupathy after COVID-19 infection and subsequent ChAdOx1 nCoV-19 vaccination. Case Rep. 2021;14:e245816. doi: 10.1136/dcr-2021-245816
- Ennaji M.M. Emerging and reemerging viral pathogens. Vol. 1: Fundamental and basic virology aspects of human, animal and plant pathogens. London; 2020.
- Bandala C., Cortes-Altamirano J.L., Reyes-Long S. et al. Putative mechanism of neurological damage in COVID-19 infection. Acta Neurobiol. Exp. (Wars). 2021;81(1):69–79. doi: 10.21307/ane-2021-008
- Gandhi S., Srivastava A.K., Ray U., Tripathi P.P. Is the collapse of the respiratory center in the brain responsible for respiratory breakdown in COVID-19 patients? ACS Chem. Neurosci. 2020;11(10):1379–1381. doi: 10.1021/acschemneuro.0c00217
- Zhou Z., Kang H., Li S., Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J. Neurol. 2020; 267(8):2179–2184. DOI: 10/1007/s00415-020-09929-7
- Wardlaw J.M., Smith C., Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013;12(5):483–497. doi: 10.1016/S1474-4422(13)70060-7
- Baig A.M., Khaleeq A., Ali U., Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem. Neurosci. 2020;11(7):995–998. doi: 10.1021/acschemneuro.0c00122
- Hamming I., Timens W., Bulthuis M.L. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570
- Ciampa M.L., O’Hara T.A., Joel C.L. et al. Absence of “cytokine storm” in hospitalized COVID-19 patients: a retrospective cohort study. Infect. Dis. Rep. 2021;13(2):377–387. doi: 10.3390/idr13020036
- Prasad M., Leon M., Lerman L.O., Lerman A. Viral endothelial dysfunction: a unifying mechanism for COVID-19. Mayo Clin Proc. 2021;96(12):3099–3108. doi: 10.1016/j.mayocp.2021.06.027
- Vervaeke P., Vermeire K., Liekens S. Endothelial dysfunction in dengue virus pathology. Rev. Med. Virol. 2015;25(1):50–67. doi: 10.1002/rmv.1818
- Portier I., Campbell R.A., Denorme F. Mechanisms of immunothrombosis in COVID-19. Curr. Opin. Hematol. 2021;28(6):445–453. doi: 10.1097/MOH.0000000000000666
- Shabani Z. Demyelination as a result of an immune response in patients with COVD-19. Acta Neurol. Belg. 2021;121(4):859–866. doi: 10.1007/s13760-021-01691-5
- Копишинская С.В., Жаринова Н.О., Величко И.А. и др. Основные принципы ведения неврологических пациентов в период пандемии COVID-19. Нервно-мышечные болезни. 2020;10(1):31–42. Kopishinskaya S.V., Zharinova N.O., Velichko I.A. et al. Basic principles of neurological patient management during the COVID-19 pandemic. Nervnomyshechnye bolezni. 2020;10(1):31–42. DOI: 10.17650 /2222-8721-2020-10-1-31-42
- International MG/COVID-19 Working Group, Jacob S., Muppidi S. et al. Guidance for the management of myasthenia gravis (MG) and Lambert–Eaton myasthenic syndrome (LEMS) during the COVID-19 pandemic. J. Neurol. Sci. 2020;412:116803. doi: 10.1016/j.jns.2020.116803
- Rajabally Y.A., Goedee H.S., Attarian S., Hartung H.P. Management challenges for chronic dysimmune neuropathies during the COVID-19 pandemic. Muscle Nerve. 2020;62(1):34–40. doi: 10.1002/mus.26896
- Jones M.R., Waggoner R., Hoyt W.F. Cerebral polyopia with extrastriate quadrantanopia: report of a case with magnetic resonance documentation of V2/V3 cortical infarction. J. Neuroоphthalmol. 1999;19(1):1–6. doi: 10.1097/00041327-199903000-00001
- Brazis Pol U., Med'yu D.K., Billert H. Topical diagnosis in clinical neurology. Philadelphia; 2001.
- Isherwood S., Jewsbury H., Nitkunan A., Ali N. An unusual case of cerebral polyopia. Can. J. Ophthalmol. 2017;52(3):e102–e104. doi: 10.1016/j.jcjo.2016.10.016
- Kesserwani H. A novel case of cerebral diplopia secondary to a posterior parietal cortex ischemic infarct: proposal of a mechanism of generation of polyopia due to convergence insufficiency. Cureus. 2021;13(1):e12962. doi: 10.7759/cureus.12962
- Gersztenkorn D., Lee A.G. Palinopsia revamped: a systematic review of the literature. Surv. Ophthalmol. 2015;60(1):1–35. doi: 10.1016/j.survophthal.2014.06.003
- Cornbrath W.T., Butter C.M., Barnes L.L. et al. Spatial characteristics of cerebral poliopia: a case study. Vision Res. 1998;38(24):3965–3978. doi: 10.1016/s0042-6989(97)00431-8
- Searle A., Rowe F.J. Vergence neural pathways: a systematic narrative literature review. Neuroophthalmology. 2016;40(5):209–218. doi: 10.1080/01658107.2016.1217028
- Козявина М.С. Нейропсихологический анализ патологии мозолистого тела. М.; 2012. Kozyavina M.S. Neuropsychological analysis of cerebellar body pathology. Moscow; 2012. (In Russ.)
- Перов Р.И., Хакимова А.Р., Попова Н.А. Cиндром умеренной энцефалопатии с обратимым поражением валика мозолистого тела: обзор литературы и собственное наблюдение в неотложной неврологической клинике. Вестник современной клинической медицины. 2018;11(5):109–114. Perov R.I., Hakimova A.R., Popova N.A. The syndrome of moderate encephalopathy with reversible lesions of the corpus callosum: a review of the literature and our own observation in an emergency neurological clinic. Bulletin of modern clinical medicine. 2018;11(5):109–114. doi: 10.20969/VSKM.2018.11(5).109-114
- Doherty M.J., Jayadev S., Watson N.F. et al. Clinical implications of splenium magnetic resonance imaging signal changes. Arch. Neurol. 2005;62(3):433–437. doi: 10.1001/archneur.62.3.433
- Park M.K., Hwang S.H., Jung S. et al. Splenial lesions of the corpus callosum: disease spectrum and MRI findings. Korean J. Radiol. 2017;18(4):710–721. doi: 10.3348/kjr.2017.18.4.710
- Park M.K., Hwang S.H., Jung S. et al. Lesions in the splenium of the corpus callosum: clinical and radiological implications. Neurol. Asia. 2014;19(1):79–88.
- Jea A., Vachhrajani S., Widjaja E. et al. Corpus callosotomy in children and the disconnection syndromes: a review. Child’s Nerv. Syst. 2008;24(6):685–692. doi: 10.1007/s00381-008-0626-4
- Uda T., Kunihiro N., Umaba R. et al. Surgical aspects of corpus callosotomy. Brain Sci. 2021;11(12):1608. doi: 10.3390/brainsci11121608
- Pristas N., Rosenberg N., Pindrik J. et al. An observational report of swallowing outcomes following corpus callosotomy. Epilepsy Behav. 2021;123:108271. doi: 10.1016/j.yebeh.2021.108271
Supplementary files
