Transcranial Direct Current Stimulation for Improvement of Neurotransplantation Outcomes in Rats with 6-Hydroxydopamine-Induced Parkinsonism

Cover Page

Cite item

Abstract

Introduction. With the number of patients with Parkinson's disease steadily growing, the need for novel treatment approaches is increasing. Combining transplantation of neuronal progenitors derived from induced pluripotent stem cells and transcranial direct current stimulation (tDCS) is among the promising methods.

Aim: to examine the effect of tDCS on the cell graft condition and motor symptoms of Parkinson's syndrome in rats.

Materials and methods. Parkinson's syndrome was modeled in Wistar rats by the unilateral intranigral injection of 6-hydroxydopamine (6-OHDA; 12 μg in 3 μL) The model rats underwent neurotransplantation (3 × 105 cells in 10 μL) into the caudate nuclei on the affected side. The animals underwent tDCS for 14 days. Behavioral changes were analyzed by open field and beam-walking tests. Development and morphological characteristics of the graft were assessed by the morphochemical study.

Results. Neurotransplantation had no significant effect on the behavior of rats with parkinsonism; however, combined with tDCS, it increased motor activity during the open field tests compared with the group of model rats (р = 0.0014) and mitigated their anxiety-related behaviors (р = 0.048) in tests at 3 weeks after the transplantation. These effects were not observed in tests at 3 months. The morphochemical study revealed larger graft sizes in the animals that underwent tDCS compared with the controls and cell shift to the marginal zone of the graft. Stimulation was also shown to induce division of a part of cells at early stages of differentiation and promote active synaptogenesis.

Conclusion. Combining neurotransplantation and tDCS in the 6-OHDA-induced model of parkinsonism demonstrated its potential to manage both motor and non-motor symptoms. Optimizing protocols of transplantation and tDCS and evaluating their long-term efficacy and safety are required to successfully implement this method into clinical practice.

About the authors

Alla V. Stavrovskaya

Research Center of Neurology

Email: alla_stav@mail.ru
ORCID iD: 0000-0002-8689-0934

leading researcher, Head, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute

Russian Federation, Moscow

Dmitry N. Voronkov

Research Center of Neurology

Email: alla_stav@mail.ru
ORCID iD: 0000-0001-5222-5322

senior researcher, Laboratory of neuromorphology, Brain Institute

Russian Federation, Moscow

Ivan A. Potapov

Research Center of Neurology

Email: alla_stav@mail.ru
ORCID iD: 0000-0002-7471-3738

junior researcher, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute

Russian Federation, Moscow

Daniil S. Titov

Bauman Moscow State Technical University

Email: alla_stav@mail.ru
ORCID iD: 0000-0002-3290-0367

postgraduate student

Russian Federation, Moscow

Artem S. Olshansky

Research Center of Neurology

Email: alla_stav@mail.ru
ORCID iD: 0000-0002-5696-8032

senior researcher, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute

Russian Federation, Moscow

Anastasiia K. Pavlova

Research Center of Neurology

Email: alla_stav@mail.ru
ORCID iD: 0009-0006-5653-5524

laboratory research assistant, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute

Russian Federation, Moscow

Olga S. Lebedeva

Lopukhin Federal Research and Clinical Center of Physical-Сhemical Medicine

Email: alla_stav@mail.ru
ORCID iD: 0000-0003-0767-5265

senior researcher, Laboratory of cell biology

Russian Federation, Moscow

Sergey N. Illarioshkin

Research Center of Neurology

Author for correspondence.
Email: alla_stav@mail.ru
ORCID iD: 0000-0002-2704-6282

Dr. Sci. (Med.), Prof., RAS Full Member, Director, Brain Institute, Deputy Director

Russian Federation, Moscow

References

  1. Ou Z., Pan J., Tang S. et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front. Public Health. 2021;9:776847. doi: 10.3389/fpubh.2021.776847
  2. Earls R.H., Menees K.B., Chung J. et al. Intrastriatal injection of preformed alpha-synuclein fibrils alters central and peripheral immune cell profiles in non-transgenic mice. J. Neuroinflammation. 2019;16(1):250. doi: 10.1186/s12974-019-1636-8
  3. Araújo B., Caridade-Silva R., Soares-Guedes C. et al. Neuroinflammation and Parkinson’s disease — from neurodegeneration to therapeutic opportunities. Cells. 2022;11(18):2908. doi: 10.3390/cells11182908
  4. MacMahon Copas A.N., McComish S.F., Fletcher J.M., Caldwell M.A. The pathogenesis of Parkinson’s disease: a complex interplay between astrocytes, microglia, and T lymphocytes? Front. Neurol. 2021;12:666737. doi: 10.3389/fneur.2021.666737
  5. Puspita L., Chung S. Y. , Shim J.-W. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain. 2017;10(1):53. doi: 10.1186/s13041-017-0340-9
  6. Santiago R.M., Barbieiro J., Lima M.M.S. et al. Depressive-like behaviors alterations in-duced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2010;34(6):1104–1114 doi: 10.1016/j.pnpbp.2010.06.004
  7. Milber J.M., Noorigian J.V., Morley J.F. et al. Lewy pathology is not the first sign of degeneration in vulnerable neurons in Parkinson disease. Neurology. 2012;79(24):2307–2314. doi: 10.1212/WNL.0b013e318278fe32
  8. Pingale T., Gupta G.L. Classic and evolving animal models in Parkinson’s disease. Pharmacol. Biochem. Behav. 2020;199:173060. doi: 10.1016/j.pbb.2020.173060
  9. Stavrovskaya A.V., Berezhnoy D.S., Voronkov D. N. et al. Classical model of 6-hydroxydopamine-induced Parkinsonism in rats is characterized by unilateral lesion of brain mesolimbic system. Neurochem. J. 2020;14(3):303–309. doi: 10.1134/S1819712420030101
  10. Kim T.W., Koo S.Y., Studer L. Pluripotent stem cell therapies for Parkinson disease: present challenges and future opportunities. Front. Cell Dev. Biol. 2020;8:729. doi: 10.3389/fcell.2020.00729
  11. Lebedeva O.S., Lagarkova M.A. Pluripotent stem cells for modelling and cell therapy of Parkinson’s disease. Biochemistry (Mosc.). 2018;83(9):1046–1056. doi: 10.1134/S0006297918090067
  12. Voronkov D.N., Stavrovskaya A.V., Guschina A.S. et al. Morphological characterization of astrocytes in a xenograft of human iPSC-derived neural precursor cells. Acta Naturae. 2022;14(3):100–108. doi: 10.32607/actanaturae.11710
  13. Воронков Д.Н., Ставровская А.В., Лебедева О.С. и др. Морфологические изменения нейрональных предшественников, полученных из индуцированных плюрипотентных стволовых клеток человека и трансплантированных в стриатум крыс с моделью болезни Паркинсона. Анналы клинической и экспериментальной неврологии. 2023;17(2):43–50. Voronkov D.N., Stavrovskaya A.V., Lebedeva O.S. et al. Morphological changes in neural progenitors derived from human induced pluripotent stem cells and transplanted into the striatum of a Parkinson’s disease rat model. Annals of Clinical and Experimental Neurology. 2023;17(2):43–50. doi: 10.54101/ACEN.2023.2.6
  14. Lefaucheur J.-P., Antal A., Ayache S.S. et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017;128(1):56–92. doi: 10.1016/j.clinph.2016.10.087
  15. Broeder S., Nackaerts E., Heremans E. et al. Transcranial direct current stimulation in Parkinson’s disease: neurophysiological mechanisms and behavioral effects. Neurosci. Biobehav. Rev. 2015;57:105–117. doi: 10.1016/j.neubiorev.2015.08.010
  16. Ni R., Yuan Y., Yang L. et al. Novel non-invasive transcranial electrical stimulation for Parkinson’s disease. Front. Aging Neurosci. 2022;14:880897. doi: 10.3389/fnagi.2022.880897
  17. Paxinos G., Watson Ch. The rat brain in stereotaxic coordinates. San Diego; 2006.
  18. Holmqvist S., Lehtonen Š., Chumarina M. et al. Creation of a library of induced pluripotent stem cells from Parkinsonian patients. NPJ Parkinsons Dis. 2016;2:16009. doi: 10.1038/npjparkd.2016.9
  19. Matsumoto H., Ugawa Y. Adverse events of tDCS and tACS: a review. Clin. Neurophysiol. Pract. 2016;2:19–25. doi: 10.1016/j.cnp.2016.12.003
  20. Болотова В.Ц., Крауз В.А., Шустов Е.Б. Биологическая модель экспериментального невроза у лабораторных животных. Биомедицина. 2015;(1):66–80. Bolotova V.Ts., Krauz V.A., Shustov E.B. Biological model of experimental neurosis in laboratory animals. Biomedicine. 2015;(1):66–80.
  21. Sweis B.M., Bachour S.P., Brekke J.A. et al. A modified beam-walking apparatus for assessment of anxiety in a rodent model of blast traumatic brain injury. Behav. Brain Res. 2016;296:149–156. doi: 10.1016/j.bbr.2015.09.015
  22. Bjorklund A., Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 1979;177(3):555–560. doi: 10.1016/0006-8993(79)90472-4
  23. Freed C.R., Greene P.E., Breeze R.E. et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 2001; 344(10):710–719. doi: 10.1056/NEJM200103083441002
  24. Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024
  25. Иллариошкин С.Н., Хаспеков Л.Г., Гривенников И.А. Моделирование болезни Паркинсона c использованием индуцированных плюрипотентных стволовых клеток. М.; 2016. Illarioshkin S.N., Khaspekov L.G., Grivennikov I.A. Modeling of Parkinson's disease using induced pluripotent stem cells. Moscow; 2016.
  26. Ставровская А.В., Новосадова Е.В., Ольшанский А.С. и др. Влияние геномного редактирования клеток на результаты нейротрансплантации при экспериментальном паркинсонизме. Современные технологии в медицине. 2017;9(4):7–14. Stavrovskaya A.V., Novosadova E.V., Olshansky A.S. et al. Effect of cell genome editing on the outcome of neurotransplantation in experimental parkinsonism. Modern Tehnologies in Medicine. 2017;9(4):7–14. doi: 10.17691/stm2017.9.4.01
  27. Pellicciari M.C., Miniussi C. Transcranial direct current stimulation in neurodegenerative disorders. J. ECT. 2018;34(3):193–202. doi: 10.1097/YCT.0000000000000539
  28. Salehinejad M.A., Ghanavati E. Complexity of cathodal tDCS: relevance of stimulation repetition, interval, and intensity. J. Physiol. 2020;598(6):1127–1129. doi: 10.1113/JP279409
  29. Pedron S., Beverley J., Haffen E. et al. Transcranial direct current stimulation produces long-lasting attenuation of cocaine-induced behavioral responses and gene regulation in corticostriatal circuits. Addict. Biol. 2017;22(5):1267–1278. doi: 10.1111/adb.12415
  30. Jackson M.P., Rahman A., Lafon B. et al. Animal models of transcranial direct current stimulation: methods and mechanisms. Clin. Neurophysiol. 2016;127(11):3425–3454. doi: 10.1016/j.clinph.2016.08.016
  31. Liebetanz D., Koch R., Mayenfels S. et al. Safety limits of cathodal transcranial direct current stimulation in rats. Clin. Neurophysiol. 2009;120(6):1161–1167. doi: 10.1016/j.clinph.2009.01.022
  32. Feng X.J., Huang Y.T., Huang Y.Z. et al. Early transcranial direct current stimulation treatment exerts neuroprotective effects on 6-OHDA-induced Parkinsonism in rats. Brain Stimul. 2020;13(3):655–663. doi: 10.1016/j.brs.2020.02.002
  33. Monai H., Hirase H. Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression. Neurosci. Res. 2018;126:15–21. doi: 10.1016/j.neures.2017.08.012
  34. Yamada Y., Sumiyoshi T. Neurobiological mechanisms of transcranial direct current stimulation for psychiatric disorders; neurophysiological, chemical, and anatomical considerations. Front. Hum. Neurosci. 2021;15:631838. doi: 10.3389/fnhum.2021.631838
  35. Ethridge V.T., Gargas N.M., Sonner M.J. et al. Effects of transcranial direct current stimulation on brain cytokine levels in rats. Front Neurosci. 2022;16:1069484. doi: 10.3389/fnins.2022.1069484
  36. Yu T.H., Wu Y.J., Chien M.E. et al. Transcranial direct current stimulation induces hippocampal metaplasticity mediated by brain-derived neurotrophic factor. Neuropharmacology. 2019;144:358–367. doi: 10.1016/j.neuropharm.2018.11.012
  37. Pedron S., Dumontoy S., Dimauro J. et al. Open-tES: an open-source stimulator for transcranial electrical stimulation designed for rodent research. PLoS One. 2020;15(7):e0236061. doi: 10.1371/journal.pone.0236061
  38. Иллариошкин С.Н. Нейротрансплантация: настало ли время? Анналы клинической и экспериментальной неврологии. 2018;12(5C):16–24. Illarioshkin S.N. Neurotransplantation: has the time come? Annals of clinical and experimental neurology. 2018;12(5S):16–24. doi: 10.25692/ACEN.2018.5.2

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of modeling Parkinson's syndrome and subsequent NT.

Download (128KB)
3. Fig. 2. Simultaneous tDCS in 4 rats.

Download (181KB)
4. Fig. 3. Motor activity assessment by the OF test in the rats. *pА < 0.05 compared with group C2.

Download (63KB)
5. Fig. 4. Distance traveled in the OF test by the model animals after NT. *pА < 0.05 compared with test 1.

Download (53KB)
6. Fig. 5. Anxiety-related behavior score in the BW tests at 3 weeks (A) and 3 months (B) after NT. *pА< 0.05 compared with group C1; #pА < 0.05 compared with group T+tDCS.

Download (98KB)
7. Fig. 6. Localization of transplanted neurons in the control group (day 24 of differentiation) and after tDCS at 3 months following the transplantation. A — shift of NSE+ cells (shown in red) to the marginal zone of the graft (arrows), the central zone is indicated by asterisks; B — graft size; C — increase in SYP (shown in green) and NSE (shown in red) colocalization areas caused by tDCS (arrows). Cell nuclei were counterstained with DAPI (shown in blue).

Download (630KB)

Copyright (c) 2024 Stavrovskaya A.V., Voronkov D.N., Potapov I.A., Titov D.S., Olshansky A.S., Pavlova A.K., Lebedeva O.S., Illarioshkin S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».