Transcranial Direct Current Stimulation for Improvement of Neurotransplantation Outcomes in Rats with 6-Hydroxydopamine-Induced Parkinsonism
- Authors: Stavrovskaya A.V.1, Voronkov D.N.1, Potapov I.A.1, Titov D.S.2, Olshansky A.S.1, Pavlova A.K.1, Lebedeva O.S.3, Illarioshkin S.N.1
-
Affiliations:
- Research Center of Neurology
- Bauman Moscow State Technical University
- Lopukhin Federal Research and Clinical Center of Physical-Сhemical Medicine
- Issue: Vol 18, No 4 (2024)
- Pages: 44-54
- Section: Original articles
- URL: https://ogarev-online.ru/2075-5473/article/view/282503
- DOI: https://doi.org/10.17816/ACEN.1199
- ID: 282503
Cite item
Abstract
Introduction. With the number of patients with Parkinson's disease steadily growing, the need for novel treatment approaches is increasing. Combining transplantation of neuronal progenitors derived from induced pluripotent stem cells and transcranial direct current stimulation (tDCS) is among the promising methods.
Aim: to examine the effect of tDCS on the cell graft condition and motor symptoms of Parkinson's syndrome in rats.
Materials and methods. Parkinson's syndrome was modeled in Wistar rats by the unilateral intranigral injection of 6-hydroxydopamine (6-OHDA; 12 μg in 3 μL) The model rats underwent neurotransplantation (3 × 105 cells in 10 μL) into the caudate nuclei on the affected side. The animals underwent tDCS for 14 days. Behavioral changes were analyzed by open field and beam-walking tests. Development and morphological characteristics of the graft were assessed by the morphochemical study.
Results. Neurotransplantation had no significant effect on the behavior of rats with parkinsonism; however, combined with tDCS, it increased motor activity during the open field tests compared with the group of model rats (р = 0.0014) and mitigated their anxiety-related behaviors (р = 0.048) in tests at 3 weeks after the transplantation. These effects were not observed in tests at 3 months. The morphochemical study revealed larger graft sizes in the animals that underwent tDCS compared with the controls and cell shift to the marginal zone of the graft. Stimulation was also shown to induce division of a part of cells at early stages of differentiation and promote active synaptogenesis.
Conclusion. Combining neurotransplantation and tDCS in the 6-OHDA-induced model of parkinsonism demonstrated its potential to manage both motor and non-motor symptoms. Optimizing protocols of transplantation and tDCS and evaluating their long-term efficacy and safety are required to successfully implement this method into clinical practice.
Full Text
##article.viewOnOriginalSite##About the authors
Alla V. Stavrovskaya
Research Center of Neurology
Email: alla_stav@mail.ru
ORCID iD: 0000-0002-8689-0934
leading researcher, Head, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute
Russian Federation, MoscowDmitry N. Voronkov
Research Center of Neurology
Email: alla_stav@mail.ru
ORCID iD: 0000-0001-5222-5322
senior researcher, Laboratory of neuromorphology, Brain Institute
Russian Federation, MoscowIvan A. Potapov
Research Center of Neurology
Email: alla_stav@mail.ru
ORCID iD: 0000-0002-7471-3738
junior researcher, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute
Russian Federation, MoscowDaniil S. Titov
Bauman Moscow State Technical University
Email: alla_stav@mail.ru
ORCID iD: 0000-0002-3290-0367
postgraduate student
Russian Federation, MoscowArtem S. Olshansky
Research Center of Neurology
Email: alla_stav@mail.ru
ORCID iD: 0000-0002-5696-8032
senior researcher, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute
Russian Federation, MoscowAnastasiia K. Pavlova
Research Center of Neurology
Email: alla_stav@mail.ru
ORCID iD: 0009-0006-5653-5524
laboratory research assistant, Laboratory of experimental pathology of the nervous system and neuropharmacology, Brain Institute
Russian Federation, MoscowOlga S. Lebedeva
Lopukhin Federal Research and Clinical Center of Physical-Сhemical Medicine
Email: alla_stav@mail.ru
ORCID iD: 0000-0003-0767-5265
senior researcher, Laboratory of cell biology
Russian Federation, MoscowSergey N. Illarioshkin
Research Center of Neurology
Author for correspondence.
Email: alla_stav@mail.ru
ORCID iD: 0000-0002-2704-6282
Dr. Sci. (Med.), Prof., RAS Full Member, Director, Brain Institute, Deputy Director
Russian Federation, MoscowReferences
- Ou Z., Pan J., Tang S. et al. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front. Public Health. 2021;9:776847. doi: 10.3389/fpubh.2021.776847
- Earls R.H., Menees K.B., Chung J. et al. Intrastriatal injection of preformed alpha-synuclein fibrils alters central and peripheral immune cell profiles in non-transgenic mice. J. Neuroinflammation. 2019;16(1):250. doi: 10.1186/s12974-019-1636-8
- Araújo B., Caridade-Silva R., Soares-Guedes C. et al. Neuroinflammation and Parkinson’s disease — from neurodegeneration to therapeutic opportunities. Cells. 2022;11(18):2908. doi: 10.3390/cells11182908
- MacMahon Copas A.N., McComish S.F., Fletcher J.M., Caldwell M.A. The pathogenesis of Parkinson’s disease: a complex interplay between astrocytes, microglia, and T lymphocytes? Front. Neurol. 2021;12:666737. doi: 10.3389/fneur.2021.666737
- Puspita L., Chung S. Y. , Shim J.-W. Oxidative stress and cellular pathologies in Parkinson’s disease. Mol. Brain. 2017;10(1):53. doi: 10.1186/s13041-017-0340-9
- Santiago R.M., Barbieiro J., Lima M.M.S. et al. Depressive-like behaviors alterations in-duced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2010;34(6):1104–1114 doi: 10.1016/j.pnpbp.2010.06.004
- Milber J.M., Noorigian J.V., Morley J.F. et al. Lewy pathology is not the first sign of degeneration in vulnerable neurons in Parkinson disease. Neurology. 2012;79(24):2307–2314. doi: 10.1212/WNL.0b013e318278fe32
- Pingale T., Gupta G.L. Classic and evolving animal models in Parkinson’s disease. Pharmacol. Biochem. Behav. 2020;199:173060. doi: 10.1016/j.pbb.2020.173060
- Stavrovskaya A.V., Berezhnoy D.S., Voronkov D. N. et al. Classical model of 6-hydroxydopamine-induced Parkinsonism in rats is characterized by unilateral lesion of brain mesolimbic system. Neurochem. J. 2020;14(3):303–309. doi: 10.1134/S1819712420030101
- Kim T.W., Koo S.Y., Studer L. Pluripotent stem cell therapies for Parkinson disease: present challenges and future opportunities. Front. Cell Dev. Biol. 2020;8:729. doi: 10.3389/fcell.2020.00729
- Lebedeva O.S., Lagarkova M.A. Pluripotent stem cells for modelling and cell therapy of Parkinson’s disease. Biochemistry (Mosc.). 2018;83(9):1046–1056. doi: 10.1134/S0006297918090067
- Voronkov D.N., Stavrovskaya A.V., Guschina A.S. et al. Morphological characterization of astrocytes in a xenograft of human iPSC-derived neural precursor cells. Acta Naturae. 2022;14(3):100–108. doi: 10.32607/actanaturae.11710
- Воронков Д.Н., Ставровская А.В., Лебедева О.С. и др. Морфологические изменения нейрональных предшественников, полученных из индуцированных плюрипотентных стволовых клеток человека и трансплантированных в стриатум крыс с моделью болезни Паркинсона. Анналы клинической и экспериментальной неврологии. 2023;17(2):43–50. Voronkov D.N., Stavrovskaya A.V., Lebedeva O.S. et al. Morphological changes in neural progenitors derived from human induced pluripotent stem cells and transplanted into the striatum of a Parkinson’s disease rat model. Annals of Clinical and Experimental Neurology. 2023;17(2):43–50. doi: 10.54101/ACEN.2023.2.6
- Lefaucheur J.-P., Antal A., Ayache S.S. et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin. Neurophysiol. 2017;128(1):56–92. doi: 10.1016/j.clinph.2016.10.087
- Broeder S., Nackaerts E., Heremans E. et al. Transcranial direct current stimulation in Parkinson’s disease: neurophysiological mechanisms and behavioral effects. Neurosci. Biobehav. Rev. 2015;57:105–117. doi: 10.1016/j.neubiorev.2015.08.010
- Ni R., Yuan Y., Yang L. et al. Novel non-invasive transcranial electrical stimulation for Parkinson’s disease. Front. Aging Neurosci. 2022;14:880897. doi: 10.3389/fnagi.2022.880897
- Paxinos G., Watson Ch. The rat brain in stereotaxic coordinates. San Diego; 2006.
- Holmqvist S., Lehtonen Š., Chumarina M. et al. Creation of a library of induced pluripotent stem cells from Parkinsonian patients. NPJ Parkinsons Dis. 2016;2:16009. doi: 10.1038/npjparkd.2016.9
- Matsumoto H., Ugawa Y. Adverse events of tDCS and tACS: a review. Clin. Neurophysiol. Pract. 2016;2:19–25. doi: 10.1016/j.cnp.2016.12.003
- Болотова В.Ц., Крауз В.А., Шустов Е.Б. Биологическая модель экспериментального невроза у лабораторных животных. Биомедицина. 2015;(1):66–80. Bolotova V.Ts., Krauz V.A., Shustov E.B. Biological model of experimental neurosis in laboratory animals. Biomedicine. 2015;(1):66–80.
- Sweis B.M., Bachour S.P., Brekke J.A. et al. A modified beam-walking apparatus for assessment of anxiety in a rodent model of blast traumatic brain injury. Behav. Brain Res. 2016;296:149–156. doi: 10.1016/j.bbr.2015.09.015
- Bjorklund A., Stenevi U. Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants. Brain Res. 1979;177(3):555–560. doi: 10.1016/0006-8993(79)90472-4
- Freed C.R., Greene P.E., Breeze R.E. et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 2001; 344(10):710–719. doi: 10.1056/NEJM200103083441002
- Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676. doi: 10.1016/j.cell.2006.07.024
- Иллариошкин С.Н., Хаспеков Л.Г., Гривенников И.А. Моделирование болезни Паркинсона c использованием индуцированных плюрипотентных стволовых клеток. М.; 2016. Illarioshkin S.N., Khaspekov L.G., Grivennikov I.A. Modeling of Parkinson's disease using induced pluripotent stem cells. Moscow; 2016.
- Ставровская А.В., Новосадова Е.В., Ольшанский А.С. и др. Влияние геномного редактирования клеток на результаты нейротрансплантации при экспериментальном паркинсонизме. Современные технологии в медицине. 2017;9(4):7–14. Stavrovskaya A.V., Novosadova E.V., Olshansky A.S. et al. Effect of cell genome editing on the outcome of neurotransplantation in experimental parkinsonism. Modern Tehnologies in Medicine. 2017;9(4):7–14. doi: 10.17691/stm2017.9.4.01
- Pellicciari M.C., Miniussi C. Transcranial direct current stimulation in neurodegenerative disorders. J. ECT. 2018;34(3):193–202. doi: 10.1097/YCT.0000000000000539
- Salehinejad M.A., Ghanavati E. Complexity of cathodal tDCS: relevance of stimulation repetition, interval, and intensity. J. Physiol. 2020;598(6):1127–1129. doi: 10.1113/JP279409
- Pedron S., Beverley J., Haffen E. et al. Transcranial direct current stimulation produces long-lasting attenuation of cocaine-induced behavioral responses and gene regulation in corticostriatal circuits. Addict. Biol. 2017;22(5):1267–1278. doi: 10.1111/adb.12415
- Jackson M.P., Rahman A., Lafon B. et al. Animal models of transcranial direct current stimulation: methods and mechanisms. Clin. Neurophysiol. 2016;127(11):3425–3454. doi: 10.1016/j.clinph.2016.08.016
- Liebetanz D., Koch R., Mayenfels S. et al. Safety limits of cathodal transcranial direct current stimulation in rats. Clin. Neurophysiol. 2009;120(6):1161–1167. doi: 10.1016/j.clinph.2009.01.022
- Feng X.J., Huang Y.T., Huang Y.Z. et al. Early transcranial direct current stimulation treatment exerts neuroprotective effects on 6-OHDA-induced Parkinsonism in rats. Brain Stimul. 2020;13(3):655–663. doi: 10.1016/j.brs.2020.02.002
- Monai H., Hirase H. Astrocytes as a target of transcranial direct current stimulation (tDCS) to treat depression. Neurosci. Res. 2018;126:15–21. doi: 10.1016/j.neures.2017.08.012
- Yamada Y., Sumiyoshi T. Neurobiological mechanisms of transcranial direct current stimulation for psychiatric disorders; neurophysiological, chemical, and anatomical considerations. Front. Hum. Neurosci. 2021;15:631838. doi: 10.3389/fnhum.2021.631838
- Ethridge V.T., Gargas N.M., Sonner M.J. et al. Effects of transcranial direct current stimulation on brain cytokine levels in rats. Front Neurosci. 2022;16:1069484. doi: 10.3389/fnins.2022.1069484
- Yu T.H., Wu Y.J., Chien M.E. et al. Transcranial direct current stimulation induces hippocampal metaplasticity mediated by brain-derived neurotrophic factor. Neuropharmacology. 2019;144:358–367. doi: 10.1016/j.neuropharm.2018.11.012
- Pedron S., Dumontoy S., Dimauro J. et al. Open-tES: an open-source stimulator for transcranial electrical stimulation designed for rodent research. PLoS One. 2020;15(7):e0236061. doi: 10.1371/journal.pone.0236061
- Иллариошкин С.Н. Нейротрансплантация: настало ли время? Анналы клинической и экспериментальной неврологии. 2018;12(5C):16–24. Illarioshkin S.N. Neurotransplantation: has the time come? Annals of clinical and experimental neurology. 2018;12(5S):16–24. doi: 10.25692/ACEN.2018.5.2
Supplementary files
