Magnetic Resonance Imaging Diagnostics of Vascular Myelopathies: from Basic Sequences to Promising Imaging Protocols
- Authors: Ponomarev G.V.1, Agafonov A.O.1, Barilyak N.L.2, Amelin A.V.1, Skoromets A.A.1
-
Affiliations:
- Pavlov First Saint Petersburg State Medical University
- Vsevolozhsk Clinical Interdistrict Hospital
- Issue: Vol 18, No 3 (2024)
- Pages: 81-90
- Section: Reviews
- URL: https://ogarev-online.ru/2075-5473/article/view/269318
- DOI: https://doi.org/10.17816/ACEN.1065
- ID: 269318
Cite item
Abstract
Magnetic resonance imaging (MRI) is the method of choice in diagnostics and differential diagnosis of spinal cord arterial infarction and venous insufficiency. However, imaging of vascular myelopathy is complicated by the lack of clear diagnostic criteria. Basic MRI sequences have low sensitivity at disease onset, and described MR patterns do not sufficiently increase imaging specificity for spinal cord ischemia, so imaging protocols are to be elaborated.
Diffusion-weighted imaging is a key additional sequence that allows establishing the ischemic nature of myelopathy.
Inclusion of spinal MR angiography in comprehensive MR examination allows visualization of aorta abnormalities, its large branches or spinal arteriovenous fistulas, so that they can be treated early.
We presented an optimal MRI protocol for patients with suspected ischemic spinal stroke. Promising high-tech MR sequences for visualization of vascular myelopathies were reviewed.
Full Text
##article.viewOnOriginalSite##About the authors
Grigory V. Ponomarev
Pavlov First Saint Petersburg State Medical University
Author for correspondence.
Email: grigoryponomarev@yandex.ru
ORCID iD: 0000-0002-6219-8855
Cand. Sci. (Med.), assistant, Department of neurology
Russian Federation, Saint PetersburgAndrey O. Agafonov
Pavlov First Saint Petersburg State Medical University
Email: agafonov@spbgmu.ru
ORCID iD: 0000-0002-0261-3527
Cand. Sci. (Med.), Assoc. Prof., Department of radiology and radiation medicine
Russian Federation, Saint PetersburgNikolay L. Barilyak
Vsevolozhsk Clinical Interdistrict Hospital
Email: barilyak2502@gmail.com
ORCID iD: 0000-0002-8174-2510
neurologist
Russian Federation, VsevolozhskAlexander V. Amelin
Pavlov First Saint Petersburg State Medical University
Email: avamelin@mail.ru
ORCID iD: 0000-0001-6437-232X
Dr. Sci. (Med.), Prof., Department of neurology
Russian Federation, Saint PetersburgAlexander A. Skoromets
Pavlov First Saint Petersburg State Medical University
Email: askoromets@gmail.com
ORCID iD: 0000-0002-5884-3110
Dr. Sci. (Med.), Prof., Academician of the Russian Academy of Sciences, Head, Department of neurology
Russian Federation, Saint PetersburgReferences
- Скоромец А.А., Афанасьев В.В., Скоромец А.П., Скоромец Т.А. Сосудистые заболевания спинного мозга: руководство для врачей. СПб.; 2019. 314 с. Skoromets A.A., Afanas'ev V.V., Skoromets A.P., Skoromets T.A. Vascular diseases of the spinal cord: a guide for doctors. St. Petersburg; 2019. 314 p. (In Russ.)
- Трофимова Т.Н., Ананьева Н.И., Назинкина Ю.В. и др. Нейрорадиология. СПб.; 2009. 288 с. Trofimova T.N., Anan'eva N.I., Nazinkina Yu.V. et al. Neuroradiology. St. Petersburg; 2009. 288 p. (In Russ.)
- Rumboldt Z., Castillo M., Huang B. et al. (eds.) Brain imaging with MRI and CT: an image pattern approach. Cambridge; 2012. 428 p.
- Morgan W. Spinal MRI for musculoskeletal clinicians. Introduction to systematic analysis of the spinal MRI. Independent; 2014. 130 p.
- Sacco R.L., Kasner S.E., Broderick J.P. et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(7):2064–2089. doi: 10.1161/STR.0b013e318296aeca
- Küker W., Weller M., Klose U. et al. Diffusion-weighted MRI of spinal cord infarction–high resolution imaging and time course of diffusion abnormality. J. Neurol. 2004;251(7):818–824. doi: 10.1007/s00415-004-0434-z
- Lyders E.M., Morris P.P. A case of spinal cord infarction following lumbar transforaminal epidural steroid injection: MR imaging and angiographic findings. Am. J. Neuroradiol. 2009;30(9):1691–1693. doi: 10.3174/ajnr.A1567
- Nedeltchev K., Loher T.J., Stepper F. et al. Long-term outcome of acute spinal cord ischemia syndrome. Stroke. 2004;35(2):560–565. doi: 10.1161/01.STR.0000111598.78198.EC
- Qureshi A.I., Afzal M.R., Suri M.F.K. A population-based study of the incidence of acute spinal cord infarction. J. Vasc. Interv. Neurol. 2017;9(4):44–48.
- Zalewski N.L., Rabinstein A.A., Krecke K.N. et al. Characteristics of spontaneous spinal cord infarction and proposed diagnostic criteria. JAMA Neurol. 2019;76(1):56–63. doi: 10.1001/jamaneurol.2018.2734
- Kim B.R., Park K.S., Kim H.J. et al. Features of non-traumatic spinal cord infarction on MRI: Changes over time. PLoS One. 2022;17(9):e0274821. doi: 10.1371/journal.pone.0274821
- Wang M.X., Smith G., Albayram M. Spinal cord watershed infarction: Novel findings on magnetic resonance imaging. Clin. Imaging. 2019;55:71-75. doi: 10.1016/j.clinimag.2019.01.023
- Jakubowicz-Lachowska D., Tarasiuk J., Kapica-Topczewska K. et al. Future challenges of spinal cord infarction treatment. Neurol. Neurochir. Pol. 2020;54(2):209–210. doi: 10.5603/PJNNS.a2020.0023
- Bax F., Gigli G.L., Iaiza F. et al. Spontaneous spinal cord ischemia during COVID-19 infection. J. Neurol. 2021;268(11):4000–4001. doi: 10.1007/s00415-021-10574-x
- Romi F., Naess H. Spinal cord infarction in clinical neurology: a review of characteristics and long-term prognosis in comparison to cerebral infarction. Eur. Neurol. 2016;76(3-4):95–98. doi: 10.1159/000446700
- Alblas C.L., Bouvy W.H., Lycklama À Nijeholt G.J., Boiten J. Acute spinal-cord ischemia: evolution of MRI findings. J. Clin. Neurol. 2012;8(3):218–223. doi: 10.3988/jcn.2012.8.3.218
- Zalewski N.L., Rabinstein A.A., Krecke K.N. et al. Spinal cord infarction: Clinical and imaging insights from the periprocedural setting. J. Neurol. Sci. 2018;388:162–167. doi: 10.1016/j.jns.2018.03.029
- Novy J., Carruzzo A., Maeder P. et al. Spinal cord ischemia: clinical and imaging patterns, pathogenesis, and outcomes in 27 patients. Arch. Neurol. 2006;63(8):1113–1120. doi: 10.1001/archneur.63.8.1113
- Da Ros V., Picchi E., Ferrazzoli V. et al. Spinal vascular lesions: anatomy, imaging techniques and treatment. Eur. J. Radiol. Open. 2021;8:100369. doi: 10.1016/j.ejro.2021.100369
- Alcaide-Leon P., Pauranik A., Alshafai L. et al. Comparison of sagittal FSE T2, STIR, and T1-weighted phase-sensitive inversion recovery in the detection of spinal cord lesions in MS at 3T. AJNR Am. J. Neuroradiol. 2016;37(5):970–975. doi: 10.3174/ajnr.A4656
- Vargas M.I., Boto J., Meling T.R. Imaging of the spine and spinal cord: an overview of magnetic resonance imaging (MRI) techniques. Rev. Neurol. (Paris). 2021;177(5):451–458. doi: 10.1016/j.neurol.2020.07.005
- Masson C., Pruvo J.P., Meder J.F. et al. Spinal cord infarction: clinical and magnetic resonance imaging findings and short term outcome. J. Neurol. Neurosurg. Psychiatry. 2004;75(10):1431–1435. doi: 10.1136/jnnp.2003.031724
- Thurnher M.M., Bammer R. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology. 2006;48(11):795–801. doi: 10.1007/s00234-006-0130-z
- Weidauer S., Nichtweiß M., Hattingen E. et al. Spinal cord ischemia: aetiology, clinical syndromes and imaging features. Neuroradiology. 2015;57(3):241–257. doi: 10.1007/s00234-014-1464-6
- Warach, S. Use of diffusion and perfusion magnetic resonance imaging as a tool in acute stroke clinical trials. Curr. Control Trials Cardiovasc. Med. 2001;2(1):38–44. doi: 10.1186/cvm-2-1-038
- Costamagna G., Meneri M., Abati E. et al. Hyperacute extensive spinal cord infarction and negative spine magnetic resonance imaging: a case report and review of the literature. Medicine (Baltimore). 2020;99(43):e22900. doi: 10.1097/MD.0000000000022900
- Yadav N., Pendharkar H., Kulkarni G.B. Spinal cord infarction: clinical and radiological features. J. Stroke Cerebrovasc. Dis.2018;27(10):2810–2821. doi: 10.1016/j.jstrokecerebrovasdis.2018.06.008
- Loher T.J., Bassetti C.L., Lövblad K.O. et al. Diffusion-weighted MRI in acute spinal cord ischaemia. Neuroradiology. 2003;45(8):557–561. doi: 10.1007/s00234-003-1023-z
- Vargas M.I., Delattre B..MA., Boto J. et al. Advanced magnetic resonance imaging (MRI) techniques of the spine and spinal cord in children and adults. Insights Imaging. 2018;9(4):549–557. doi: 10.1007/s13244-018-0626-1
- Краснов В.С., Прахова Л.Н., Тотолян Н.А. Современные представления о диагностике и терапии обострений заболеваний спектра оптиконевромиелита. Неврология, нейропсихиатрия, психосоматика. 2022;14(5):69–76. Krasnov V.S., Prakhova L.N., Totolyan N.A. Current view on the diagnosis and treatment of neuromyelitis optica spectrum disorders exacerbations. Nevrologiya, neiropsikhiatriya, psikhosomatika. 2022;14(5):69–76. doi: 10.14412/2074-2711-2022-5-69-76
- Weidauer S., Wagner M., Nichtweiß M. Magnetic Resonance Imaging and Clinical Features in Acute and Subacute Myelopathies. Clin. Neuroradiol. 2017;27(4):417–433. doi: 10.1007/s00062-017-0604-x
- Kranz P.G., Amrhein T.J. Imaging approach to myelopathy: Acute, Subacute, and Chronic. Radiol. Clin. North Am. 2019;57(2):257–279. doi: 10.1016/j.rcl.2018.09.006
- Sarbu N., Lolli V., Smirniotopoulos J.G. Magnetic resonance imaging in myelopathy: a pictorial review. Clin. Imaging. 2019;57:56–68. doi: 10.1016/j.clinimag.2019.05.002
- Kister I., Johnson E., Raz E. et al. Specific MRI findings help distinguish acute transverse myelitis of neuromyelitis optica from spinal cord infarction. Mult. Scler. Relat. Disord. 2016;9:62–67. doi: 10.1016/j.msard.2016.04.005
- Lebouteux M-V., Franques J., Guillevin R. et al. Revisiting the spectrum of lower motor neuron diseases with snake eyes appearance on magnetic resonance imaging. Eur. J. Neurol. 2014;21(9):1233–1241. doi: 10.1111/ene.12465
- Desai J.A., Melanson M. Teaching neuroimages: anterior horn cell hyperintensity in Hirayama disease. Neurology. 2011;77(12):e73. doi: 10.1212/WNL.0b013e31822f02d0
- Hsu J.L., Cheng M.Y., Liao M.F. et al. A comparison between spinal cord infarction and neuromyelitis optica spectrum disorders: clinical and MRI studies. Sci. Rep. 2019;9(1):7435. doi: 10.1038/s41598-019-43606-8
- Yasuda N., Kuroda Y., Ito T. et al. Postoperative spinal cord ischaemia: magnetic resonance imaging and clinical features. Eur. J. Cardiothorac. Surg. 2021;60(1):164–174. doi: 10.1093/ejcts/ezaa476
- Vargas M.I., Gariani J., Sztajzel R. et al. Spinal cord ischemia: practical imaging tips, pearls, and pitfalls. Am. J. Neuroradiol. 2015;36(5):825–830. doi: 10.3174/ajnr.A4118
- Kiyosue H., Matsumaru Y., Niimi Y. et al. Angiographic and clinical characteristics of thoracolumbar spinal epidural and dural arteriovenous fistulas. Stroke. 2017;48(12):3215–3222. doi: 10.1161/STROKEAHA.117.019131
- Vuong S.M., Jeong W.J., Morales H. et al. Vascular diseases of the spinal cord: infarction, hemorrhage, and venous congestive myelopathy. Semin. Ultrasound CT MR. 2016;37(5):466–481. doi: 10.1053/j.sult.2016.05.008
- Zalewski N.L., Rabinstein A.A., Brinjikji W. et al. Unique gadolinium enhancement pattern in spinal dural arteriovenous fistulas. JAMA Neurol. 2018;75(12):1542–1545. doi: 10.1001/jamaneurol.2018.2605
- Brinjikji W., Yin R., Nasr D.M. et al. Spinal epidural arteriovenous fistulas. J. Neurointerv. Surg. 2016;8(12):1305–1310. doi: 10.1136/neurintsurg-2015-012181
- Vargas M.I., Barnaure I., Gariani J. et al. Vascular imaging techniques of the spinal cord. Semin. Ultrasound CT MR. 2017;38(2):143–152. doi: 10.1053/j.sult.2016.07.004
- Pattany P.M., Saraf-Lavi E., Bowen B.C. MR angiography of the spine and spinal cord. Top. Magn. Reson. Imaging. 2003;14(6):444–460. doi: 10.1097/00002142-200312000-00003
- Lindenholz A., TerBrugge K.G., van Dijk J.M. et al. The accuracy and utility of contrast-enhanced MR angiography for localization of spinal dural arteriovenous fistulas: the Toronto experience. Eur. Radiol. 2014. 24(11): 2885–2894. doi: 10.1007/s00330-014-3307-6
- Vargas M.I., Drake-Pérez M., Delattre B.M.A. et al. Feasibility of a synthetic MR imaging sequence for spine imaging. AJNR Am. J. Neuroradiol. 2018;39(9):1756–1763. doi: 10.3174/ajnr.A5728
- Беленький В.В., Козырева Е.А., Плахотина Н.А. и др. Диагностические возможности спинальной МРТ-трактографии и спинальной МРТ-ангиографии у больного спастической диплегией. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022;122(7):151–155. Belenky V.V., Kozireva E.A., Plakhotina N.A. et al. Utility of spinal MRI tractography and spinal MRI angiography in the diagnosis of spastic diplegia. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2022;122(7):151–155. doi: 10.17116/jnevro2022122071151
- Cheng S.J., Tsai P.H., Lee Y.T. et al. Diffusion tensor imaging of the spinal cord. Magn. Reson. Imaging Clin. N. Am. 2021;29(2):195–204. doi: 10.1016/j.mric.2021.02.002
- Martin A.R., De Leener B., Cohen-Adad J. et al. A novel MRI biomarker of spinal cord white matter injury: T2*-weighted white matter to gray matter signal intensity ratio. AJNR Am. J. Neuroradiol. 2017;38(6):1266–1273. doi: 10.3174/ajnr.A5162
Supplementary files
