МРТ-диагностика сосудистых миелопатий: от базовых последовательностей к перспективным протоколам исследования
- Авторы: Пономарев Г.В.1, Агафонов А.О.1, Бариляк Н.Л.2, Амелин А.В.1, Скоромец А.А.1
-
Учреждения:
- Первый Санкт-Петербургский государственный медицинский университет имени И.П. Павлова
- Всеволожская клиническая межрайонная больница
- Выпуск: Том 18, № 3 (2024)
- Страницы: 81-90
- Раздел: Обзоры
- URL: https://ogarev-online.ru/2075-5473/article/view/269318
- DOI: https://doi.org/10.17816/ACEN.1065
- ID: 269318
Цитировать
Аннотация
Магнитно-резонансная томография (МРТ) является методом выбора в диагностике и дифференциальной диагностике артериального инфаркта спинного мозга и его венозной недостаточности. Однако визуализация сосудистой миелопатии осложнена отсутствием чётких диагностических критериев. При этом базовые последовательности МРТ обладают низкой чувствительностью в дебюте заболевания, а описанные МР-паттерны недостаточно повышают специфичность радиологической картины ишемии спинного мозга, что требует расширения протокола обследования.
Дополнительной последовательностью, позволяющей установить ишемическую природу миелопатии, в первую очередь является диффузионно-взвешенное изображение.
Включение в комплексное МР-обследование спинальной МР-ангиографии позволяет визуализировать патологию аорты, её крупных ветвей или спинальные артериовенозные фистулы, способствуя их ранней коррекции.
Представлен оптимальный технический протокол МР-исследования при подозрении на ишемический спинальный инсульт. Рассмотрена роль перспективных высокотехнологичных МР-последовательностей в визуализации сосудистой миелопатии.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Григорий Вячеславович Пономарев
Первый Санкт-Петербургский государственный медицинский университет имени И.П. Павлова
Автор, ответственный за переписку.
Email: grigoryponomarev@yandex.ru
ORCID iD: 0000-0002-6219-8855
канд. мед. наук, ассистент каф. неврологии
Россия, Санкт-ПетербургАндрей Олегович Агафонов
Первый Санкт-Петербургский государственный медицинский университет имени И.П. Павлова
Email: agafonov@spbgmu.ru
ORCID iD: 0000-0002-0261-3527
канд. мед. наук, доцент каф. рентгенологии и радиационной медицины
Россия, Санкт-ПетербургНиколай Любомирович Бариляк
Всеволожская клиническая межрайонная больница
Email: barilyak2502@gmail.com
ORCID iD: 0000-0002-8174-2510
врач-невролог
Россия, ВсеволожскАлександр Витальевич Амелин
Первый Санкт-Петербургский государственный медицинский университет имени И.П. Павлова
Email: avamelin@mail.ru
ORCID iD: 0000-0001-6437-232X
д-р мед. наук, профессор, профессор каф. неврологии
Россия, Санкт-ПетербургАлександр Анисимович Скоромец
Первый Санкт-Петербургский государственный медицинский университет имени И.П. Павлова
Email: askoromets@gmail.com
ORCID iD: 0000-0002-5884-3110
д-р мед. наук, профессор, академик РАН, зав. каф. неврологии
Россия, Санкт-ПетербургСписок литературы
- Скоромец А.А., Афанасьев В.В., Скоромец А.П., Скоромец Т.А. Сосудистые заболевания спинного мозга: руководство для врачей. СПб.; 2019. 314 с. Skoromets A.A., Afanas'ev V.V., Skoromets A.P., Skoromets T.A. Vascular diseases of the spinal cord: a guide for doctors. St. Petersburg; 2019. 314 p. (In Russ.)
- Трофимова Т.Н., Ананьева Н.И., Назинкина Ю.В. и др. Нейрорадиология. СПб.; 2009. 288 с. Trofimova T.N., Anan'eva N.I., Nazinkina Yu.V. et al. Neuroradiology. St. Petersburg; 2009. 288 p. (In Russ.)
- Rumboldt Z., Castillo M., Huang B. et al. (eds.) Brain imaging with MRI and CT: an image pattern approach. Cambridge; 2012. 428 p.
- Morgan W. Spinal MRI for musculoskeletal clinicians. Introduction to systematic analysis of the spinal MRI. Independent; 2014. 130 p.
- Sacco R.L., Kasner S.E., Broderick J.P. et al. An updated definition of stroke for the 21st century: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2013;44(7):2064–2089. doi: 10.1161/STR.0b013e318296aeca
- Küker W., Weller M., Klose U. et al. Diffusion-weighted MRI of spinal cord infarction–high resolution imaging and time course of diffusion abnormality. J. Neurol. 2004;251(7):818–824. doi: 10.1007/s00415-004-0434-z
- Lyders E.M., Morris P.P. A case of spinal cord infarction following lumbar transforaminal epidural steroid injection: MR imaging and angiographic findings. Am. J. Neuroradiol. 2009;30(9):1691–1693. doi: 10.3174/ajnr.A1567
- Nedeltchev K., Loher T.J., Stepper F. et al. Long-term outcome of acute spinal cord ischemia syndrome. Stroke. 2004;35(2):560–565. doi: 10.1161/01.STR.0000111598.78198.EC
- Qureshi A.I., Afzal M.R., Suri M.F.K. A population-based study of the incidence of acute spinal cord infarction. J. Vasc. Interv. Neurol. 2017;9(4):44–48.
- Zalewski N.L., Rabinstein A.A., Krecke K.N. et al. Characteristics of spontaneous spinal cord infarction and proposed diagnostic criteria. JAMA Neurol. 2019;76(1):56–63. doi: 10.1001/jamaneurol.2018.2734
- Kim B.R., Park K.S., Kim H.J. et al. Features of non-traumatic spinal cord infarction on MRI: Changes over time. PLoS One. 2022;17(9):e0274821. doi: 10.1371/journal.pone.0274821
- Wang M.X., Smith G., Albayram M. Spinal cord watershed infarction: Novel findings on magnetic resonance imaging. Clin. Imaging. 2019;55:71-75. doi: 10.1016/j.clinimag.2019.01.023
- Jakubowicz-Lachowska D., Tarasiuk J., Kapica-Topczewska K. et al. Future challenges of spinal cord infarction treatment. Neurol. Neurochir. Pol. 2020;54(2):209–210. doi: 10.5603/PJNNS.a2020.0023
- Bax F., Gigli G.L., Iaiza F. et al. Spontaneous spinal cord ischemia during COVID-19 infection. J. Neurol. 2021;268(11):4000–4001. doi: 10.1007/s00415-021-10574-x
- Romi F., Naess H. Spinal cord infarction in clinical neurology: a review of characteristics and long-term prognosis in comparison to cerebral infarction. Eur. Neurol. 2016;76(3-4):95–98. doi: 10.1159/000446700
- Alblas C.L., Bouvy W.H., Lycklama À Nijeholt G.J., Boiten J. Acute spinal-cord ischemia: evolution of MRI findings. J. Clin. Neurol. 2012;8(3):218–223. doi: 10.3988/jcn.2012.8.3.218
- Zalewski N.L., Rabinstein A.A., Krecke K.N. et al. Spinal cord infarction: Clinical and imaging insights from the periprocedural setting. J. Neurol. Sci. 2018;388:162–167. doi: 10.1016/j.jns.2018.03.029
- Novy J., Carruzzo A., Maeder P. et al. Spinal cord ischemia: clinical and imaging patterns, pathogenesis, and outcomes in 27 patients. Arch. Neurol. 2006;63(8):1113–1120. doi: 10.1001/archneur.63.8.1113
- Da Ros V., Picchi E., Ferrazzoli V. et al. Spinal vascular lesions: anatomy, imaging techniques and treatment. Eur. J. Radiol. Open. 2021;8:100369. doi: 10.1016/j.ejro.2021.100369
- Alcaide-Leon P., Pauranik A., Alshafai L. et al. Comparison of sagittal FSE T2, STIR, and T1-weighted phase-sensitive inversion recovery in the detection of spinal cord lesions in MS at 3T. AJNR Am. J. Neuroradiol. 2016;37(5):970–975. doi: 10.3174/ajnr.A4656
- Vargas M.I., Boto J., Meling T.R. Imaging of the spine and spinal cord: an overview of magnetic resonance imaging (MRI) techniques. Rev. Neurol. (Paris). 2021;177(5):451–458. doi: 10.1016/j.neurol.2020.07.005
- Masson C., Pruvo J.P., Meder J.F. et al. Spinal cord infarction: clinical and magnetic resonance imaging findings and short term outcome. J. Neurol. Neurosurg. Psychiatry. 2004;75(10):1431–1435. doi: 10.1136/jnnp.2003.031724
- Thurnher M.M., Bammer R. Diffusion-weighted MR imaging (DWI) in spinal cord ischemia. Neuroradiology. 2006;48(11):795–801. doi: 10.1007/s00234-006-0130-z
- Weidauer S., Nichtweiß M., Hattingen E. et al. Spinal cord ischemia: aetiology, clinical syndromes and imaging features. Neuroradiology. 2015;57(3):241–257. doi: 10.1007/s00234-014-1464-6
- Warach, S. Use of diffusion and perfusion magnetic resonance imaging as a tool in acute stroke clinical trials. Curr. Control Trials Cardiovasc. Med. 2001;2(1):38–44. doi: 10.1186/cvm-2-1-038
- Costamagna G., Meneri M., Abati E. et al. Hyperacute extensive spinal cord infarction and negative spine magnetic resonance imaging: a case report and review of the literature. Medicine (Baltimore). 2020;99(43):e22900. doi: 10.1097/MD.0000000000022900
- Yadav N., Pendharkar H., Kulkarni G.B. Spinal cord infarction: clinical and radiological features. J. Stroke Cerebrovasc. Dis.2018;27(10):2810–2821. doi: 10.1016/j.jstrokecerebrovasdis.2018.06.008
- Loher T.J., Bassetti C.L., Lövblad K.O. et al. Diffusion-weighted MRI in acute spinal cord ischaemia. Neuroradiology. 2003;45(8):557–561. doi: 10.1007/s00234-003-1023-z
- Vargas M.I., Delattre B..MA., Boto J. et al. Advanced magnetic resonance imaging (MRI) techniques of the spine and spinal cord in children and adults. Insights Imaging. 2018;9(4):549–557. doi: 10.1007/s13244-018-0626-1
- Краснов В.С., Прахова Л.Н., Тотолян Н.А. Современные представления о диагностике и терапии обострений заболеваний спектра оптиконевромиелита. Неврология, нейропсихиатрия, психосоматика. 2022;14(5):69–76. Krasnov V.S., Prakhova L.N., Totolyan N.A. Current view on the diagnosis and treatment of neuromyelitis optica spectrum disorders exacerbations. Nevrologiya, neiropsikhiatriya, psikhosomatika. 2022;14(5):69–76. doi: 10.14412/2074-2711-2022-5-69-76
- Weidauer S., Wagner M., Nichtweiß M. Magnetic Resonance Imaging and Clinical Features in Acute and Subacute Myelopathies. Clin. Neuroradiol. 2017;27(4):417–433. doi: 10.1007/s00062-017-0604-x
- Kranz P.G., Amrhein T.J. Imaging approach to myelopathy: Acute, Subacute, and Chronic. Radiol. Clin. North Am. 2019;57(2):257–279. doi: 10.1016/j.rcl.2018.09.006
- Sarbu N., Lolli V., Smirniotopoulos J.G. Magnetic resonance imaging in myelopathy: a pictorial review. Clin. Imaging. 2019;57:56–68. doi: 10.1016/j.clinimag.2019.05.002
- Kister I., Johnson E., Raz E. et al. Specific MRI findings help distinguish acute transverse myelitis of neuromyelitis optica from spinal cord infarction. Mult. Scler. Relat. Disord. 2016;9:62–67. doi: 10.1016/j.msard.2016.04.005
- Lebouteux M-V., Franques J., Guillevin R. et al. Revisiting the spectrum of lower motor neuron diseases with snake eyes appearance on magnetic resonance imaging. Eur. J. Neurol. 2014;21(9):1233–1241. doi: 10.1111/ene.12465
- Desai J.A., Melanson M. Teaching neuroimages: anterior horn cell hyperintensity in Hirayama disease. Neurology. 2011;77(12):e73. doi: 10.1212/WNL.0b013e31822f02d0
- Hsu J.L., Cheng M.Y., Liao M.F. et al. A comparison between spinal cord infarction and neuromyelitis optica spectrum disorders: clinical and MRI studies. Sci. Rep. 2019;9(1):7435. doi: 10.1038/s41598-019-43606-8
- Yasuda N., Kuroda Y., Ito T. et al. Postoperative spinal cord ischaemia: magnetic resonance imaging and clinical features. Eur. J. Cardiothorac. Surg. 2021;60(1):164–174. doi: 10.1093/ejcts/ezaa476
- Vargas M.I., Gariani J., Sztajzel R. et al. Spinal cord ischemia: practical imaging tips, pearls, and pitfalls. Am. J. Neuroradiol. 2015;36(5):825–830. doi: 10.3174/ajnr.A4118
- Kiyosue H., Matsumaru Y., Niimi Y. et al. Angiographic and clinical characteristics of thoracolumbar spinal epidural and dural arteriovenous fistulas. Stroke. 2017;48(12):3215–3222. doi: 10.1161/STROKEAHA.117.019131
- Vuong S.M., Jeong W.J., Morales H. et al. Vascular diseases of the spinal cord: infarction, hemorrhage, and venous congestive myelopathy. Semin. Ultrasound CT MR. 2016;37(5):466–481. doi: 10.1053/j.sult.2016.05.008
- Zalewski N.L., Rabinstein A.A., Brinjikji W. et al. Unique gadolinium enhancement pattern in spinal dural arteriovenous fistulas. JAMA Neurol. 2018;75(12):1542–1545. doi: 10.1001/jamaneurol.2018.2605
- Brinjikji W., Yin R., Nasr D.M. et al. Spinal epidural arteriovenous fistulas. J. Neurointerv. Surg. 2016;8(12):1305–1310. doi: 10.1136/neurintsurg-2015-012181
- Vargas M.I., Barnaure I., Gariani J. et al. Vascular imaging techniques of the spinal cord. Semin. Ultrasound CT MR. 2017;38(2):143–152. doi: 10.1053/j.sult.2016.07.004
- Pattany P.M., Saraf-Lavi E., Bowen B.C. MR angiography of the spine and spinal cord. Top. Magn. Reson. Imaging. 2003;14(6):444–460. doi: 10.1097/00002142-200312000-00003
- Lindenholz A., TerBrugge K.G., van Dijk J.M. et al. The accuracy and utility of contrast-enhanced MR angiography for localization of spinal dural arteriovenous fistulas: the Toronto experience. Eur. Radiol. 2014. 24(11): 2885–2894. doi: 10.1007/s00330-014-3307-6
- Vargas M.I., Drake-Pérez M., Delattre B.M.A. et al. Feasibility of a synthetic MR imaging sequence for spine imaging. AJNR Am. J. Neuroradiol. 2018;39(9):1756–1763. doi: 10.3174/ajnr.A5728
- Беленький В.В., Козырева Е.А., Плахотина Н.А. и др. Диагностические возможности спинальной МРТ-трактографии и спинальной МРТ-ангиографии у больного спастической диплегией. Журнал неврологии и психиатрии им. С.С. Корсакова. 2022;122(7):151–155. Belenky V.V., Kozireva E.A., Plakhotina N.A. et al. Utility of spinal MRI tractography and spinal MRI angiography in the diagnosis of spastic diplegia. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2022;122(7):151–155. doi: 10.17116/jnevro2022122071151
- Cheng S.J., Tsai P.H., Lee Y.T. et al. Diffusion tensor imaging of the spinal cord. Magn. Reson. Imaging Clin. N. Am. 2021;29(2):195–204. doi: 10.1016/j.mric.2021.02.002
- Martin A.R., De Leener B., Cohen-Adad J. et al. A novel MRI biomarker of spinal cord white matter injury: T2*-weighted white matter to gray matter signal intensity ratio. AJNR Am. J. Neuroradiol. 2017;38(6):1266–1273. doi: 10.3174/ajnr.A5162
Дополнительные файлы
