Study of the operability and effectiveness of the algorithm for controlling the acceleration and deceleration of a wheeled vehicle by means of an accelerator pedal in conditions of highway traffic

Cover Page


Cite item

Full Text

Abstract

BACKGROUND: Modern battery-powered vehicles still do not meet the needs of consumers in terms of autonomous mileage. Therefore, the problem of increasing the energy efficiency in order to reduce energy consumption for motion is highly relevant. One of the directions, along with the use of more efficient units and systems, is the development of control algorithms that minimize these costs and make it possible to control the motion using only the accelerator pedal.

AIM: The study of the operability and effectiveness of the algorithm for controlling a vehicle only with an accelerator pedal using virtual simulation of motion, further practical implementation of the algorithm in the control system.

METHODS: The study was carried out using the MATLAB/Simulink software package.

RESULTS: The paper describes the functioning of the single-pedal control algorithm using the example of a passenger vehicle with an individual traction electric drive, the results of virtual simulation proving its operability and energy efficiency for the case of highway traffic.

CONCLUSION: The practical value of the study lies in the proven operability, energy efficiency, and the possibility of using the algorithm for development of the software for vehicle motion control systems.

About the authors

Alexander V. Klimov

KAMAZ Innovation Center; Moscow Polytechnic University

Author for correspondence.
Email: klimmanen@mail.ru
ORCID iD: 0000-0002-5351-3622
SPIN-code: 7637-3104

Cand. Sci. (Engineering), Head of the Electrified Vehicles Service, Associate Professor of the Advanced Engineering School of Electric Transport

Russian Federation, Moscow; Moscow

Baurzhan K. Ospanbekov

KAMAZ Innovation Center; Moscow Polytechnic University

Email: ospbk@mail.ru
ORCID iD: 0000-0003-2756-7907
SPIN-code: 4857-4073

Cand. Sci. (Engineering), Deputy Head of the Electrified Vehicles Service, Associate Professor of the Advanced Engineering School of Electric Transport

Russian Federation, Moscow; Moscow

Akop V. Antonyan

KAMAZ Innovation Center; Moscow Polytechnic University

Email: AntonyanAV@kamaz.ru
ORCID iD: 0000-0002-5566-6569
SPIN-code: 4797-9808

Cand. Sci. (Engineering), Head Specialist in Programming and Simulation Modeling, Associate Professor, Senior Researcher of the Advanced Engineering School of Electric Transport

Russian Federation, Moscow; Moscow

References

  1. Characteristics of the KAMAZ 6282 electric bus. [internet] Naberezhnye Chelny. Accessed: 15.10.2022. Available from: https://kamaz.ru/upload/bus/%D0%AD%D0%BB%D0%B5%D0%BA%D1%82%D1%80%D0%BE%D0%B1%D1%83%D1%81%20KAMAZ-6282.pdf
  2. Klimov AV, Chirkin VG, Tishin AM. On some design features and types of transport traction electric motors. Avtomobilnaya promyshlennost. 2021;7:15–21. (In Russ).
  3. Klimov AV, Tishin AM, Chirkin VG. Various types of synchronous traction motors for urban operating conditions. Gruzovik. 2021;6:3–7. (In Russ).
  4. Zhileykin MM, Klimov AV, Maslennikov IK. Control signal algorithm of the accelerator pedal providing an effective energy consumption by an electrobus traction gear. Izvestiya MGTU MAMI. 2022;16(1):51–60. (In Russ). doi: 10.17816/2074-0530-100232
  5. Butarovich DO, Skotnikov GI, Eranosyan AV. Algorithm for controlling regenerative braking using the accelerator pedal. Nauchno-tekhnicheskiy vestnik Bryanskogo gosudarstvennogo universiteta. 2022;4. (In Russ).
  6. Wen He, Chen Wang, Hui Jia. A single-pedal regenerative braking control strategy of accelerator pedal for electric vehicles based on adaptive fuzzy control algorithm. Energy Procedia. 2018;152:624–629. doi: 10.1016/j.egypro.2018.09.221
  7. Yongqiang Zhao, Xin Zhang, Jiashi Li, et al. A research on evaluation and development of single-pedal function for electric vehicle based on PID. J. Phys.: Conf. Ser. 2020;1605.
  8. Hongwen He, Chen Wang, Hui Jia, Xing Cui. An intelligent braking system composed single-pedal and multi-objective optimization neural network braking control strategies for electric vehicle. Applied Energy. 2020;259. doi: 10.1016/j.apenergy.2019.114172
  9. Zhang J, Lv C, Gou J, et al. Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car. Proc. Inst. Mech. Eng., Part D: J Automob. Eng. 2012;226(10):1289–1302.
  10. Guo J, Wang J, Cao B. Regenerative braking strategy for electric vehicles. In: Intelligent Vehicles Symposium. IEEE; 2009:864–868.
  11. Xu Guoqing, Li Weimin, Xu Kun, et al. An intelligent regenerative braking strategy for electric vehicles. Energies. 2011;4(9):1461–1477.
  12. Zhang J, Lv C, Qiu M, et al. Braking energy regeneration control of a fuel cell hybrid electric bus. Energy Conversion & Management. 2013;76:1117–1124.
  13. Wang JW, Tsai SH, Li HX, et al. Spatially Piecewise Fuzzy Control Design for Sampled-Data Exponential Stabilization of Semi-linear Parabolic PDE Systems. IEEE Transactions on Fuzzy Systems. 2018;26(5):2967–2980.
  14. Zhang Kangkang, Xu Liangfei, Jianfeng Hua, et al. A Comparative Study on Regenerative Braking System and Its Strategies for Rear-wheel Drive Battery Electric Vehicles. Automotive Engineering. 2015;02:125–131.
  15. Lv C, Zhang J, Li Y, et al. Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles. Energy Conversion and Management. 2015;92:469–482.
  16. Kulas RA, Rieland H, Pechauer J. A System Safety Perspective into Chevy Bolt’s One Pedal Driving. SAE Technical Paper. 2019. doi: 10.4271/2019-01-0133
  17. Wang J, Besselink IJM, van Boekel JJP, Nijmeijer H. Evaluating the energy efficiency of a one pedal driving algorithm In: 2015 European Battery, Hybrid and Fuel Cell Electric Vehicle Congress (EEVC 2015), Brussels, Belgium. Tu/e; 2015.
  18. Patent RF № 2797069 / 31.05.2023. Byul. № 16. Klimov AV, Ospanbekov BK, Zhileykin MM, et al. Sposob upravleniya individualnym tyagovym elektroprivodom vedushchikh koles mnogokolesnogo transportnogo sredstva. (In Russ). EDN: QAUBVR
  19. Klimov AV. Algorithm for forming traction and braking torque settings at the shaft of a traction motor by means of a single pedal. Izvestiya MGTU MAMI. 2023;17(3):261–271. (In Russ). doi: 10.17816/2074-0530-321668
  20. Zhileikin MM, Kotiev GO. Modeling of transport systems. Moscow: Bauman MSTU; 2020. (In Russ).
  21. Biryukov VV, Porsev EG. Traction electric drive. Novosibirsk: NGTU; 2018.
  22. GOST R 54810-2011. Avtomobilnye transportnye sredstva. Toplivnaya ekonomichnost. Metody ispytaniy. Moscow: STANDARTINFORM; 2012. (In Russ).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Main control principles [18, 19]: a — vehicle motion modes depending on an accelerator pedal position; b — at pushing the pedal; c — at releasing the pedal.

Download (105KB)
3. Fig. 2. The motion cycle diagram [21].

Download (68KB)
4. Fig. 3. Probability density of the accelerator pedal position in the direct torque control option (two-pedal control).

Download (119KB)
5. Fig. 4. Probability density of the brake pedal position in the direct torque control option (two-pedal control).

Download (107KB)
6. Fig. 5. Probability density of the traction torque at the driving wheel in the direct torque control option (two-pedal control).

Download (121KB)
7. Fig. 6. Probability density of the regenerative torque at the driving wheel in the direct torque control option (two-pedal control).

Download (102KB)
8. Fig. 7. Probability density of the braking torque at the driving wheel in the direct torque control option (two-pedal control).

Download (114KB)
9. Fig. 8. Probability density of the accelerator pedal position in the single-pedal control option.

Download (121KB)
10. Fig. 9. Probability density of the traction torque at the driving wheel in the single-pedal control option.

Download (117KB)
11. Fig. 10. Probability density of the regenerative torque at the driving wheel in the single-pedal control option.

Download (106KB)
12. Fig. 11. Total specific energy consumed for motion in the highway cycle per km: 1 — with the single-pedal control; 2 — with the direct torque control.

Download (93KB)
13. Fig. 12. Regenerative specific energy consumed for motion in the highway cycle per km: 1 — with the single-pedal control; 2 — with the direct torque control.

Download (92KB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».