Selenium, zinc, and copper. Role in the development of follicular thyroid adenoma

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background: In recent years, nutrition and the role of essential microelements (EM) in the development of neoplastic processes have received increasing attention. While there is compelling evidence on the role of individual EM and complex deficiencies in EM status in the development of nodular goiter, there is insufficient data on the role of EM in the development of thyroid tumors, particularly benign follicular thyroid adenoma (FA). This was the reason for conducting this study.

Objective: Evaluation of hair levels of selenium (Se), zinc (Zn), and copper (Cu) and the relationships between these elements in individuals with FTA.

Materials and methods: An observational, open-label, cross-sectional, single-center study was conducted, including 107 women diagnosed with FTA aged 20–60 years. The control group (n=46) consisted of women aged 20–60 years without severe somatic pathology or thyroid disease. All patients underwent anthropometric assessment (height, weight, BMI, waist circumference (WC), waist-to-hip ratio (WHR), blood tests for thyroid hormones, thyroid ultrasound, and atomic absorption spectrophotometry for hair levels of Se, Zn, and Cu.

Results: Individuals with thyroid FA were significantly more likely to have deficiencies in Se, Zn, and Cu in their hair. Se deficiency was detected in 70.1%, Zn deficiency in 65.4%, and Cu deficiency in 64.5% of women with FTA. Moreover, the levels of these EMs were lower than in the control group. The median Se level in individuals with FTA was 0.13 (0.09; 0.15) μg/g, in the control group – 0.165 (0.15; 0.28) μg/g (p=0.000), Zn – 175 (169; 180) μg/g, in the control group – 184.5 (181; 189) μg/g (p=0.000), Cu – 10.8 (9.8; 11.2) μg/g, in the control group – 11.5 (11; 11.9) μg/g (p=0.000). An imbalance of the microenvironment, expressed as a lower Se/Zn and Se/Cu ratio in the hair of individuals with FTA, was detected, as well as direct correlations between Se and Zn, and Zn and Cu in the hair of individuals with FTA.

Conclusion: The obtained results suggest that an imbalance of the microenvironment may influence the development of FTA.

About the authors

Anzhelika S. Khalimova

Kuzbass Regional Clinical Hospital named after S.V. Belyaev

Author for correspondence.
Email: anguli@mail.ru
ORCID iD: 0000-0003-3652-2954

Endocrinologist

Russian Federation, Kemerovo

L. V. Kvitkova

Kemerovo State Medical University

Email: kvitkova_lv@mail.ru
ORCID iD: 0000-0001-5128-3344

Dr. Sci. (Med.), Professor, Department of Faculty Therapy and Occupational Pathology named after Professor V.V. Syrnev

Russian Federation, Kemerovo

References

  1. Liu S., Song J.Y, Zhang J.Q. Progress of risk factors for thyroid tumors [Article in Chinese]. Zhonghua Yu. Fang Yi. Xue Za Zhi. 2020 Aug 6;54(8):897-901. https://doi.org/10.3760/cma.j.cn112150-20200609-00846
  2. Shen Y., Wang X., Wang L., et. al. Modifiable risk factors for thyroid cancer: lifestyle and residence environment. Endokrynol Pol. 2024;75(2):119-129. https://doi.org/10.5603/ep.97258
  3. Norris J.J., Farci F. Follicular Adenoma. 2023 Apr 23. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan. PMID: 32644746.
  4. Петров В.Г., Нелаева А.А., Якимов С.А. др. Фолликулярная аденома щитовидной железы. Сибирский онкологический журнал. Материалы конференций. 2006;1:80-81. [Petrov V.G., Nelaeva A.A., Yakimov S.A., et al. Follicular adenoma of the thyroid gland. Siberian Journal of Oncology. Conference materials. 2006;1:80-81. (In Russ.)].
  5. Сазонов М.Е., Штандель С.А., Караченцев Ю.И. др. Молекулярно-генетические маркеры развития фолликулярного рака щитовидной железы. Проблемы эндокринной патологии. 2018;2:25-30 [Sazonov M. E., Shtandel S. A., Karachentsev Yu. I., et. al. Molecular genetic markers of the development of follicular thyroid cancer. Problems of endocrine pathology. 2018;2:25-30. (In Russ.)].
  6. McHenry C.R., Phitayakorn R. Follicular adenoma and carcinoma of the thyroid gland. Oncologist. 2011;16(5):585-93. https://doi.org/10.1634/theoncologist.2010-0405
  7. De Pergola G., Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013;2013:291546. https://doi.org/10.1155/2013/291546
  8. Malaguarnera R., Morcavallo A., Belfiore A. The insulin and igf-I pathway in endocrine glands carcinogenesis. J Oncol. 2012;2012:635614. doi: 10.1155/2012/635614
  9. Yildirim Simsir I., Cetinkalp S., Kabalak T. Review of Factors Contributing to Nodular Goiter and Thyroid Carcinoma. Med Princ Pract. 2020;29(1):1-5. https://doi.org/10.1159/000503575
  10. Камилова Н.М., Садыхов Н.М., Алиев Ч.С. Диагностическое и прогностическое значение изучения влияния цинка, меди и селена на состояние здоровья человека. Биомедицина. 2016;4:71-77 [Kamilova N.M., Sadykhov N.M., Aliev Ch.S. Diagnostic and prognostic value of studying the influence of zinc, copper and selenium on human health. Biomedicine. 2016;4:71-77. (In Russ.)].
  11. Xiang N., Zhao R., Zhong W. Sodium selenite induces apoptosis by generation of superoxide via the mitochondrial-dependent pathway in human prostate cancer cells. Cancer Chemother Pharmacol. 2009 Jan;63(2):351-62. https://doi.org/10.1007/s00280-008-0745-3
  12. De Oliveira Maia M., Batista B.A.M., Sousa M.P., et al. Selenium and thyroid cancer: a systematic review. Nutr Cancer. 2020;72(8):1255-1263. https://doi.org/10.1080/01635581.2019.1679194
  13. Hao R., Yu P., Gui L., et al. Relationship between Serum Levels of Selenium and Thyroid Cancer: A Systematic Review and Meta-Analysis. Nutr Cancer. 2023;75(1):14-23. doi: 10.1080/01635581.2022.2115082
  14. Zaichick V. Comparison of trace element contents in normal and adenomatous thyroid investigated using instrumental neutron activation analysis. Saudi J Biomed Res. 2021;6(11):246-255.
  15. Свиридова С.П., Кашия Ш.Р., Обухова О.А. др. Возможности эссенциального селена в онкологии. Вестник РОНЦ им. Н. Н. Блохина РАМН. 2012;23(3):6-14. [Sviridova S.P., Kashiya Sh.R., Obukhova O.A., et al. Potential of essential selenium in oncology. Bulletin of the N.N. Blokhin Russian Cancer Research Center, Russian Academy of Medical Sciences. 2012;23(3):6-14. (In Russ.)]
  16. Kucharzewski M., Braziewicz J., Majewska U., Gózdz S. Copper, zinc, and selenium in whole blood and thyroid tissue of people with various thyroid diseases. Biol Trace Elem Res. 2003;93(1-3):9-18. https://doi.org/10.1385/BTER:93:1-3:9
  17. Reddy S.B., Charles M.J., Kumar M.R., et al. Trace elemental analysis of adenoma and carcinoma thyroid by PIXE method. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2002;196(3-4):333-339.
  18. Majewska U., Braziewicz J., Banaś D., et al. Zn concentration in thyroid tissue and whole blood of women with different diseases of thyroid. Biol Trace Elem Res. 2001 Jun;80(3):193-9. https://doi.org/10.1385/BTER:80:3:193
  19. Baltaci A.K., Dundar T.K., Aksoy F., Mogulkoc R. Changes in the Serum Levels of Trace Elements Before and After the Operation in Thyroid Cancer Patients. Biol Trace Elem Res. 2017 Jan;175(1):57-64. https://doi.org/10.1007/s12011-016-0768-2
  20. Al-Sayer H., Mathew T.C., Asfar S., et al. Serum changes in trace elements during thyroid cancers. Mol Cell Biochem. 2004 May;260(1-2):1-5. https://doi.org/10.1023/b:mcbi.0000026027.20680.c7
  21. Zaichick V. Evaluation of Trace Elements in Thyroid Adenomas using Energy Dispersive X-Ray Fluorescent Analysis. J NanoSci Res Rep, 2021;3(4):1-7.
  22. Zaichick V. Evaluation of twenty chemical element contents in thyroid adenomas using neutron activation analysis and inductively coupled plasma atomic emission spectrometry. World Journal of Advanced Research and Reviews. 2021;11(03):242–257. https://doi.org/10.30574/wjarr.2021.11.3.0448
  23. Kazi Tani L.S., Gourlan A.T., Dennouni-Medjati N., et al. Copper Isotopes and Copper to Zinc Ratio as Possible Biomarkers for Thyroid Cancer. Front Med (Lausanne). 2021 Sep 8;8:698167. https://doi.org/10.3389/fmed.2021.698167
  24. Iwase K., Nagasaka A., Kato K., et al. Localization of Cu/Zn and Mn superoxide dismutase in various thyroid disorders. Acta Endocrinol (Copenh). 1993 Dec;129(6):573-8. https://doi.org/10.1530/acta.0.1290573
  25. Shen F., Cai W.S., Li J.L., et al. The Association Between Serum Levels of Selenium, Copper, and Magnesium with Thyroid Cancer: a Meta-analysis. Biol Trace Elem Res. 2015 Oct;167(2):225-35. https://doi.org/10.1007/s12011-015-0304-9
  26. Kosova F., Cetin B., Akinci M., et al. Serum copper levels in benign and malignant thyroid diseases. Bratisl Lek Listy. 2012;113(12):718-20. https://doi.org/10.4149/bll_2012_162

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).