Application of machine learning methods to predict aerodynamic pressure coefficients on rectangular buildings and structures
- Authors: Saiyan S.G.1, Shelepina V.B.1
-
Affiliations:
- Moscow State University of Civil Engineering (National Research University) (MGSU)
- Issue: Vol 20, No 3 (2025)
- Pages: 381-393
- Section: Construction system design and layout planning. Construction mechanics. Bases and foundations, underground structures
- URL: https://ogarev-online.ru/1997-0935/article/view/358849
- ID: 358849
Cite item
Full Text
Abstract
About the authors
S. G. Saiyan
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: Berformert@gmail.com
ORCID iD: 0000-0003-0694-4865
V. B. Shelepina
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: berenikas00@mail.ru
References
Stathopoulos T., Alrawashdeh H. Wind loads on buildings: A code of practice perspective // Journal of Wind Engineering and Industrial Aerodynamics. 2020. Vol. 206. P. 104338. doi: 10.1016/j.jweia.2020.104338 Сатанов А.А., Васин А.Д. Экспериментальное исследование распределения ветрового давления на высотное здание уникальной формы // Приволжский научный журнал. 2021. № 3 (59). С. 38–46. EDN AANDEZ. Хазов П.А., Шилов С.С. Геометрическая оптимизация аэродинамики высотного здания с интегрированными ветрогенераторами // Вестник Южно-Уральского государственного университета. Серия: Строительство и архитектура. 2024. Т. 24. № 3. С. 73–82. doi: 10.14529/build240307. EDN VJYQQC. Yan B., Li Y., Li X., Zhou X., Wei M., Yang Q. et al. Wind tunnel investigation of twisted wind effect on a typical super-tall building // Buildings. 2022. Vol. 12. Issue 12. P. 2260. doi: 10.3390/buildings12122260 Sari D.P., Cho K.P. Performance Comparison of Different Building Shapes Using a Wind Tunnel and a Computational Model // Buildings. 2022. Vol. 12. Issue 2. P. 144. doi: 10.3390/buildings12020144 Potsis T., Tominaga Y., Stathopoulos T. Computational wind engineering: 30 years of research progress in building structures and environment // Journal of Wind Engineering and Industrial Aerodynamics. 2023. Vol. 234. P. 105346. doi: 10.1016/j.jweia.2023.105346 Саиян С.Г., Васильев А.В. Численное моделирование динамического отклика башни «Эволюция» при ветровом воздействии с учетом застройки и разрешением турбулентности // Вестник МГСУ. 2025. Т. 20. № 2. С. 246–279. doi: 10.22227/1997-0935.2025.2.246-279 Wijesooriya K., Mohotti D., Lee C.K., Mendis P. A technical review of computational fluid dynamics (CFD) applications on wind design of tall buildings and structures: Past, present and future // Journal of Building Engineering. 2023. Vol. 74. P. 106828. doi: 10.1016/j.jobe.2023.106828 Саиян С.Г., Ефимова А.М. Расчетные аэродинамические исследования комплекса Московского международного делового центра «Москва-Сити» при последовательном возведении зданий // Вестник МГСУ. 2024. Т. 19. № 6. С. 906–941. doi: 10.22227/1997-0935.2024.6.906-941. EDN OKQQFI. Wang X., Zhang G., Li Y., Kong H., Liu L., Zhang C. Field Measurements of Wind-Induced Responses of the Shanghai World Financial Center during Super Typhoon Lekima // Sensors. 2023. Vol. 23. Issue 14. P. 6519. doi: 10.3390/s23146519 Cheng X.X., Zhao L., Ge Y.J., Dong J., Peng Y. Full-Scale/Model Test Comparisons to Validate the Traditional Atmospheric Boundary Layer Wind Tunnel Tests : Literature Review and Personal Perspectives // Applied Sciences. 2024. Vol. 14. Issue 2. P. 782. doi: 10.3390/app14020782 Yi J., Li Q.S. Wind tunnel and full-scale study of wind effects on a super-tall building // Journal of Fluids and Structures. 2015. Vol. 58. Pp. 236–253. doi: 10.1016/j.jfluidstructs.2015.08.005 Charisi S., Thiis T.K., Aurlien T. Full-scale measurements of wind-pressure coefficients in twin medium-rise buildings // Buildings. 2019. Vol. 9. Issue 3. P. 63. doi: 10.3390/buildings9030063 Wu T., Snaiki R. Applications of machine learning to wind engineering // Frontiers in Built Environment. 2022. Vol. 8. doi: 10.3389/fbuil.2022.811460 Alanani M., Elshaer A. ANN-based optimization framework for the design of wind load resisting system of tall buildings // Engineering Structures. 2023. Vol. 285. P. 116032. doi: 10.1016/j.engstruct.2023.116032 Nikose T.J., Sonparote R.S. Dynamic along wind response of tall buildings using Artificial Neural Network // Cluster Computing. 2019. Vol. 22. Issue S2. Pp. 3231–3246. doi: 10.1007/s10586-018-2027-0 Ding Y., Ye X.W., Guo Y. Wind load assessment with the JPDF of wind speed and direction based on SHM data // Structures. 2023. Vol. 47. Pp. 2074–2080. doi: 10.1016/j.istruc.2022.12.028 Oh B.K., Glisic B., Kim Y., Park H.S. Convolutional neural network-based wind-induced response estimation model for tall buildings // Computer-Aided Civil and Infrastructure Engineering. 2019. Vol. 34. Nо. 10. Pp. 843–858. doi: 10.1111/mice.12476 Yetkin S., Abuhanieh S., Yigit S. Investigation on the abilities of different artificial intelligence methods to predict the aerodynamic coefficients // Expert Systems with Applications. 2024. Vol. 237. P. 121324. doi: 10.1016/j.eswa.2023.121324 Захаров Ф.Н., Цянь Ц., Сюй И. Прогнозирование ветровой нагрузки на высотные здания с использованием ансамблевого метода объединения результатов // Universum: технические науки. 2024. № 11–4 (128). С. 66–75. doi: 10.32743/UniTech.2024.128.11.18607. EDN UKMYTR. Саиян С.Г., Шелепина В.Б. Прогнозирование аэродинамических коэффициентов на закручивающиеся формообразующие зданий и сооружений на базе машинного обучения и CFD-моделирования // Вестник МГСУ. 2024. Т. 19. № 5. С. 713–728. doi: 10.22227/1997-0935.2024.5.713-728. EDN HUZBDU. Melbourne W.H. Comparison of measurements on the CAARC standard tall building model in simulated model wind flows // Journal of Wind Engineering and Industrial Aerodynamics. 1980. Vol. 6. Issue 1–2. Pp. 73–88. doi: 10.1016/0167-6105(80)90023-9
Supplementary files
