Application of machine learning methods to predict aerodynamic pressure coefficients on rectangular buildings and structures

Cover Page

Cite item

Full Text

Abstract

Introduction. Wind effects are one of the key factors in the design of buildings and structures. Normative calculations, physical and numerical modelling, as well as in-situ measurements have a number of limitations in application. The use of machine learning (ML) technologies opens up new opportunities for rapid and accurate prediction of wind loads. The application of ML models to assess the distribution of aerodynamic pressure coefficients on rectangular buildings is considered, which allows not only to calculate integral characteristics (forces, moments), but also to analyze in detail the distribution of loads on facades.Materials and methods. For model training, the Tokyo Polytechnic University database was used, which presents the results of wind tunnel tests on building models of various heights and widths. Data augmentation was performed, which increased the original example size and increased the ability of ML models to generalize various geometric configurations. During feature processing, different angles of wind attack were taken into account, and the correlation of features was analyzed in order to eliminate multicollinearity. Linear regression, decision tree and gradient boosting (CatBoost) were the main prediction methods.Results. The calculations showed that the best balance between the accuracy of predictions and maintaining physical interpretability was provided by gradient boosting over the decision tree (CatBoost), reducing the average weighted error to 16–18 %. In addition, a comparison was made with the results of aerodynamic tests, which confirmed the adequacy of the proposed approach.Conclusions. The application of machine learning methods, in particular gradient boosting, makes it possible to reliably predict aerodynamic pressure coefficients on various dimensional shapes of buildings at a wide range of wind attack angles. The obtained results demonstrate the promising use of ML models to accelerate and reduce the cost of wind impact assessment stages.

About the authors

S. G. Saiyan

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: Berformert@gmail.com
ORCID iD: 0000-0003-0694-4865

V. B. Shelepina

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: berenikas00@mail.ru

References

  1. Stathopoulos T., Alrawashdeh H. Wind loads on buildings: A code of practice perspective // Journal of Wind Engineering and Industrial Aerodynamics. 2020. Vol. 206. P. 104338. doi: 10.1016/j.jweia.2020.104338
  2. Сатанов А.А., Васин А.Д. Экспериментальное исследование распределения ветрового давления на высотное здание уникальной формы // Приволжский научный журнал. 2021. № 3 (59). С. 38–46. EDN AANDEZ.
  3. Хазов П.А., Шилов С.С. Геометрическая оптимизация аэродинамики высотного здания с интегрированными ветрогенераторами // Вестник Южно-Уральского государственного университета. Серия: Строительство и архитектура. 2024. Т. 24. № 3. С. 73–82. doi: 10.14529/build240307. EDN VJYQQC.
  4. Yan B., Li Y., Li X., Zhou X., Wei M., Yang Q. et al. Wind tunnel investigation of twisted wind effect on a typical super-tall building // Buildings. 2022. Vol. 12. Issue 12. P. 2260. doi: 10.3390/buildings12122260
  5. Sari D.P., Cho K.P. Performance Comparison of Different Building Shapes Using a Wind Tunnel and a Computational Model // Buildings. 2022. Vol. 12. Issue 2. P. 144. doi: 10.3390/buildings12020144
  6. Potsis T., Tominaga Y., Stathopoulos T. Computational wind engineering: 30 years of research progress in building structures and environment // Journal of Wind Engineering and Industrial Aerodynamics. 2023. Vol. 234. P. 105346. doi: 10.1016/j.jweia.2023.105346
  7. Саиян С.Г., Васильев А.В. Численное моделирование динамического отклика башни «Эволюция» при ветровом воздействии с учетом застройки и разрешением турбулентности // Вестник МГСУ. 2025. Т. 20. № 2. С. 246–279. doi: 10.22227/1997-0935.2025.2.246-279
  8. Wijesooriya K., Mohotti D., Lee C.K., Mendis P. A technical review of computational fluid dynamics (CFD) applications on wind design of tall buildings and structures: Past, present and future // Journal of Building Engineering. 2023. Vol. 74. P. 106828. doi: 10.1016/j.jobe.2023.106828
  9. Саиян С.Г., Ефимова А.М. Расчетные аэродинамические исследования комплекса Московского международного делового центра «Москва-Сити» при последовательном возведении зданий // Вестник МГСУ. 2024. Т. 19. № 6. С. 906–941. doi: 10.22227/1997-0935.2024.6.906-941. EDN OKQQFI.
  10. Wang X., Zhang G., Li Y., Kong H., Liu L., Zhang C. Field Measurements of Wind-Induced Responses of the Shanghai World Financial Center during Super Typhoon Lekima // Sensors. 2023. Vol. 23. Issue 14. P. 6519. doi: 10.3390/s23146519
  11. Cheng X.X., Zhao L., Ge Y.J., Dong J., Peng Y. Full-Scale/Model Test Comparisons to Validate the Traditional Atmospheric Boundary Layer Wind Tunnel Tests : Literature Review and Personal Perspectives // Applied Sciences. 2024. Vol. 14. Issue 2. P. 782. doi: 10.3390/app14020782
  12. Yi J., Li Q.S. Wind tunnel and full-scale study of wind effects on a super-tall building // Journal of Fluids and Structures. 2015. Vol. 58. Pp. 236–253. doi: 10.1016/j.jfluidstructs.2015.08.005
  13. Charisi S., Thiis T.K., Aurlien T. Full-scale measurements of wind-pressure coefficients in twin medium-rise buildings // Buildings. 2019. Vol. 9. Issue 3. P. 63. doi: 10.3390/buildings9030063
  14. Wu T., Snaiki R. Applications of machine learning to wind engineering // Frontiers in Built Environment. 2022. Vol. 8. doi: 10.3389/fbuil.2022.811460
  15. Alanani M., Elshaer A. ANN-based optimization framework for the design of wind load resisting system of tall buildings // Engineering Structures. 2023. Vol. 285. P. 116032. doi: 10.1016/j.engstruct.2023.116032
  16. Nikose T.J., Sonparote R.S. Dynamic along wind response of tall buildings using Artificial Neural Network // Cluster Computing. 2019. Vol. 22. Issue S2. Pp. 3231–3246. doi: 10.1007/s10586-018-2027-0
  17. Ding Y., Ye X.W., Guo Y. Wind load assessment with the JPDF of wind speed and direction based on SHM data // Structures. 2023. Vol. 47. Pp. 2074–2080. doi: 10.1016/j.istruc.2022.12.028
  18. Oh B.K., Glisic B., Kim Y., Park H.S. Convolutional neural network-based wind-induced response estimation model for tall buildings // Computer-Aided Civil and Infrastructure Engineering. 2019. Vol. 34. Nо. 10. Pp. 843–858. doi: 10.1111/mice.12476
  19. Yetkin S., Abuhanieh S., Yigit S. Investigation on the abilities of different artificial intelligence methods to predict the aerodynamic coefficients // Expert Systems with Applications. 2024. Vol. 237. P. 121324. doi: 10.1016/j.eswa.2023.121324
  20. Захаров Ф.Н., Цянь Ц., Сюй И. Прогнозирование ветровой нагрузки на высотные здания с использованием ансамблевого метода объединения результатов // Universum: технические науки. 2024. № 11–4 (128). С. 66–75. doi: 10.32743/UniTech.2024.128.11.18607. EDN UKMYTR.
  21. Саиян С.Г., Шелепина В.Б. Прогнозирование аэродинамических коэффициентов на закручивающиеся формообразующие зданий и сооружений на базе машинного обучения и CFD-моделирования // Вестник МГСУ. 2024. Т. 19. № 5. С. 713–728. doi: 10.22227/1997-0935.2024.5.713-728. EDN HUZBDU.
  22. Melbourne W.H. Comparison of measurements on the CAARC standard tall building model in simulated model wind flows // Journal of Wind Engineering and Industrial Aerodynamics. 1980. Vol. 6. Issue 1–2. Pp. 73–88. doi: 10.1016/0167-6105(80)90023-9

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».