Organization of structural components of the uterine lymphatic system during pregnancy or in the absence of it (literature review)

Cover Page

Cite item

Full Text

Abstract

The uterus is structurally an unique organ, the endometrium of which undergoes constant cyclical changes with the onset of puberty of the body. Little is known about the presence of lymphatic vessels in the endometrium of the uterus during pregnancy or outside of this condition, although the presence of lymphatic vessels in the myometrium and perimetrium has been established. Considering the importance of lymphatic vessels in other organs and tissues, lymph circulation through them can play a key role in establishing and maintaining pregnancy. The aim of the work is to summarize the literature data on the presence of structural components of the lymphatic system in the uterine wall during pregnancy or in the absence of it. The search for literature on the topic of the work was carried out using the e-library and Pubmed databases up to and including 12.11.2025 in accordance with the PRISMA methodology. In the early stages of pregnancy (I trimester), lymphangiogenesis occurs in the endometrium of the uterus, stimulated by cytotrophoblasts and NK cells, which ensures the outflow of intercellular fluid and protects the fetus from triggering a rejection reaction. It has been shown that human trophoblasts produce molecules that promote the formation of lymphatic vessels in the endometrium of the uterus during pregnancy, such as VEGF-C, Ang-2, as well as D2-40 and LYVE-1. In late pregnancy (II and III trimesters), lymphatic vessels are not found in the mature placenta, which may be due to active suppression of their growth (antilymphangiogenesis). At the same time, none of the main lymphatic markers – PROX-1, VEGFR-3, LYVE1 and D2-40 – are expressed by endothelial cells of placental vessels, which suggests that the role of markers of lymphangiogenesis is likely to decrease with the development of pregnancy. The additional experimental studies are needed to confirm this hypothesis. The lymph outflow from the myometrium and perimetrium of the uterus during pregnancy coincides with that in the absence of it.

About the authors

Elena N. Morozova

Belgorod State National Research University

Author for correspondence.
Email: tiger2910@rambler.ru
ORCID iD: 0000-0002-6117-080X

Candidate of Medical Sciences, Associate Professor, Associate Professor of the Department of Human Anatomy and Histology

Russian Federation, Belgorod

Anastasiya V. Karpikova

Belgorod State National Research University

Email: karp5002@mail.ru
ORCID iD: 0009-0005-6170-5754

student, speciality “General Medicine”

Russian Federation, Belgorod

Vitaliy N. Morozov

Belgorod State National Research University

Email: vitaliyymorozov85@mail.ru
ORCID iD: 0000-0002-1169-4285

Doctor of Medical Sciences, Associate Professor, Associate Professor of the Department of Human Anatomy and Histology

Russian Federation, Belgorod

References

  1. Mehrara B.J., Radtke A.J., Randolph G.J., Wachter B.T., Greenwel P., Rovira I.I. et al. The emerging importance of lymphatics in health and disease: an NIH workshop report. J Clin Invest. 2023;133(17):e171582. doi: 10.1172/JCI171582.
  2. Mikhael M., Khan Y.S. Anatomy, Abdomen and Pelvis: Lymphatic Drainage. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025.
  3. Tsukiji N., Suzuki-Inoue K. Impact of Hemostasis on the Lymphatic System in Development and Disease. Arterioscler Thromb Vasc Biol. 2023;43(10):1747–1754. doi: 10.1161/ATVBAHA.123.318824.
  4. Hsu M.C., Itkin M. Lymphatic Anatomy. Tech Vasc Interv Radiol. 2016;19(4):247–254. doi: 10.1053/j.tvir.2016.10.003.
  5. Fu X., Wu X., Liu D., Zhang C., Xie H., Wang Y. et al. Practice and exploration of the ''student-centered" multielement fusion teaching mode in human anatomy Randomized Controlled Trial. Surg Radiol Anat. 2022;44(1):15–23. doi: 10.1007/s00276-021-02866-8.
  6. Wolfram-Gabel R. Anatomie du système lymphatique pelvien [Anatomy of the pelvic lymphatic system]. Cancer Radiother. 2013;17(5–6):549–552. French. doi: 10.1016/j.canrad.2013.05.010.
  7. Gasner A., Aatsha PA. Physiology, Uterus. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025.
  8. Koukourakis M.I., Giatromanolaki A., Sivridis E., Simopoulos C., Gatter K.C., Harris A.L. et al. LYVE-1 immunohistochemical assessment of lymphangiogenesis in endometrial and lung cancer. J Clin Pathol. 2005;58(2): 202–206. doi: 10.1136/jcp.2004.019174.
  9. Holesh J.E., Bass AN, Lord M. Physiology, Ovulation. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025.
  10. Togioka B.M., Tonismae T. Uterine Rupture. 2023. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2025.
  11. Moher D., Liberati A., Tetzlaff J., Altman D.G. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 200921;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
  12. Red-Horse K. Lymphatic vessel dynamics in the uterine wall. Placenta. 2008;29(Suppl A):9–55. doi: 10.1016/j.placenta.2007.11.011.
  13. Yokomori H., Oda M., Kaneko F., Kawachi S., Tanabe M., Yoshimura K. et al. Lymphatic marker podoplanin/D2-40 in human advanced cirrhotic liver--re-evaluations of microlymphatic abnormalities. BMC Gastroenterol. 2010;10:131. doi: 10.1186/1471-230X-10-131.
  14. Ercoli A., Delmas V., Iannone V., Fagotti A., Fanfani F., Corrado G. et al. The lymphatic drainage of the uterine cervix in adult fresh cadavers: anatomy and surgical implications. Eur J Surg Oncol. 2010;36(3):298-303. doi: 10.1016/j.ejso.2009.06.009.
  15. Ueki M. Histologic study of endometriosis and examination of lymphatic drainage in and from the uterus. Am J Obstet Gynecol. 2011;165(1):201-209. doi: 10.1016/0002-9378(91)90252-m.
  16. Geppert B., Lönnerfors C., Bollino M., Arechvo A., Persson J. A study on uterine lymphatic anatomy for standardization of pelvic sentinel lymph node detection in endometrial cancer. Gynecol Oncol. 2017;145(2):256–261. doi: 10.1016/j.ygyno.2017.02.018.
  17. Kraima A.C., Derks M., Smit N.N., Van Munsteren J.C., Van der Velden J., Kenter G.G. et al. Lymphatic drainage pathways from the cervix uteri: implications for radical hysterectomy? Gynecol Oncol. 2014;132(1):107–113. doi: 10.1016/j.ygyno.2013.10.030
  18. Blackwell P., Fraser I. Superficial lymphatics in the functional zone of normal human endometrium. Microvasc Res. 1981;21:142e52. doi: 10.1016/0026-2862(81)90027-3.
  19. Uchino S., Ichikawa S., Okubo M., Nakamura Y., Iimura A. Methods of detection of lymphatics and their changes with oestrous cycle. Inter Angio. 1987;6:271e8.
  20. Rogers P.A., Donoghue J.F., Girling J.E. Endometrial lymphangiogensis. Placenta. 2008;29 Suppl A:S48–S54. doi: 10.1016/j.placenta.2007.09.009.
  21. Hey-Cunningham A.J., Peters K.M., Zevallos H.B., Berbic M., Markham R. et al. Angiogenesis, lymphangiogenesis and neurogenesis in endometriosis. Front Biosci (Elite Ed). 2013;1;5(3):1033–1056. doi: 10.2741/e682.
  22. Red-Horse K., Rivera J., Schanz A., Zhou Y., Winn V., Kapidzic M. et al. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation. J Clin Invest. 2006;116(10):2643–2652. doi: 10.1172/JCI27306.
  23. Ortega M.A., Saez M.A., Fraile-Martínez O., Asúnsolo Á., Pekarek L., Bravo C. et al. Increased Angiogenesis and Lymphangiogenesis in the Placental Villi of Women with Chronic Venous Disease during Pregnancy. Int J Mol Sci. 20203;21(7):2487. doi: 10.3390/ijms21072487.
  24. Becker J., Tchagou G.E., Schmidt S., Zelent C., Kahl F. et al. Absence of lymphatic vessels in term placenta. BMC Pregnancy Childbirth. 2020;29;20(1):380. doi: 10.1186/s12884-020-03073-w.
  25. Böckle B.C., Sölder E., Kind S., Romani N., Sepp N.T. DC-sign+ CD163+ macrophages expressing hyaluronan receptor LYVE-1 are located within chorion villi of the placenta. Placenta. 2008;29(2):187–192. doi: 10.1016/j.placenta.2007.11.003
  26. Onak Kandemir N., Barut F., Barut A., Birol İ.E., Dogan Gun B., Ozdamar S.O. Biological importance of podoplanin expression in chorionic villous stromal cells and its relationship to placental pathologies. Sci Rep. 2019;9(1):14230. doi: 10.1038/s41598-019-50652-9.
  27. Monaghan R.M., Page D.J., Ostergaard P., Keavney B.D. The physiological and pathological functions of VEGFR3 in cardiac and lymphatic development and related diseases. Cardiovasc Res. 2021;117(8):1877–1890. doi: 10.1093/cvr/cvaa291.
  28. Ridge K.M., Eriksson J.E., Pekny M., Goldman R.D. Roles of vimentin in health and disease. Genes Dev. 2022;1; 36(7-8):391–407. doi: 10.1101/gad.349358.122.
  29. Złotkowska A., Adamczyk S., Andronowska A. Presence of trophoblast in the uterine lumen affects VEGF-C expression in porcine endometrium. Theriogenology. 2019;125:216–223. doi: 10.1016/j.theriogenology.2018.11.007.
  30. Li W.N., Hsiao K.Y., Wang C.A., Chang N., Hsu P.L., Sun C.H. et al. Extracellular vesicle-associated VEGF-C promotes lymphangiogenesis and immune cells infiltration in endometriosis. Proc Natl Acad Sci USA. 2020;117(41): 25859–25868. doi: 10.1073/pnas.1920037117.
  31. Hashimoto I., Kodama J., Seki N., Hongo A., Yoshinouchi M., Okuda H. et al. Vascular endothelial growth factor-C expression and its relationship to pelvic lymph node status in invasive cervical cancer. Br J Cancer. 2001;85(1):93–7. doi: 10.1054/bjoc.2001.1846.
  32. Wu X., Liu N. The role of Ang/Tie signaling in lymphangiogenesis. Lymphology. 2010;43(2):59–72.
  33. Korhonen E.A., Murtomäki A., Jha S.K., Anisimov A., Pink A., Zhang Y. et al. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell-surface expression. J Clin Invest. 2022;132(15):e155478. doi: 10.1172/JCI155478.
  34. Bai R., Diao B., Li K., Xu X., Yang P. Serum Tie-1 is a Valuable Marker for Predicting the Progression and Prognosis of Cervical Cancer. Pathol Oncol Res. 2021;27:1610006. doi: 10.3389/pore.2021.1610006.
  35. Gordon E.J., Gale N.W., Harvey N.L. Expression of the hyaluronan receptor LYVE-1 is not restricted to the lymphatic vasculature; LYVE-1 is also expressed on embryonic blood vessels. Dev Dyn. 2008;237(7):1901–1909. doi: 10.1002/dvdy.21605.
  36. Motomura K., Hara M., Ito I., Morita H., Matsumoto K. Roles of human trophoblasts' pattern recognition receptors in host defense and pregnancy complications. J Reprod Immunol. 2023;156:103811. doi: 10.1016/j.jri.2023.103811.
  37. Freise L., Behncke R.Y., Allerkamp H.H., Sandermann T.H., Chu N.H., Funk E.M. et al. Three-Dimensional Histological Characterization of the Placental Vasculature Using Light Sheet Microscopy. Biomolecules. 2023; 17;13(6):1009. doi: 10.3390/biom13061009.
  38. Pawlak J.B., Bálint L., Lim L., Ma W., Davis R.B., Benyó Z. et al. Lymphatic mimicry in maternal endothelial cells promotes placental spiral artery remodeling. J Clin Invest. 2019;1;129(11):4912–4921. doi: 10.1172/JCI120446.
  39. Ding Y., Lv C., Zhou Y., Zhang H., Zhao L., Xu Y. et al. Vimentin loss promotes cancer proliferation through up-regulating Rictor/AKT/β-catenin signaling pathway. Exp Cell Res. 2021;405(1):112666. doi: 10.1016/j.yexcr.2021.112666.
  40. Langlois B., Belozertseva E., Parlakian A., Bourhim M., Gao-Li J., Blanc J. et al. Vimentin knockout results in increased expression of sub-endothelial basement membrane components and carotid stiffness in mice. Sci Rep. 2017;7(1):11628. doi: 10.1038/s41598-017-12024-z.
  41. Kulkarni R.M., Greenberg J.M., Akeson A.L. NFATc1 regulates lymphatic endothelial development. Mech Dev. 2009;126(5-6):350-365. doi: 10.1016/j.mod.2009.02.003.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Morozova E.N., Karpikova A.V., Morozov V.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).